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1. Introduction

A central question in labor economics is to what extent earnings inequality arises from
differences among workers, the firms that employ them, and the patterns of sorting
between the two. The seminal framework of Abowd, Kramarz, and Margolis (1999) (AKM)
provided a powerful empirical tool for decomposing wages into worker and firm fixed
effects, revealing that firms account for a substantial share of wage variation. For over two
decades, this two-way fixed effects model has been the workhorse for studying the sources
of inequality, the firm-size wage premium, and the nature of labor market sorting.

Recent work, however, has identified core challenges to this paradigm. The first con-
cerns “limited mobility bias”: because firm effects are solely identified from workers
who move between employers, sparse mobility networks can lead to noisy estimates that
overstate firmheterogeneity while understating sorting (Andrews et al. 2008; Kline, Saggio,
and Sølvsten 2020; Bonhomme et al. 2023). The second concerns the model’s restrictive
additivity assumption. Bonhomme, Lamadon, and Manresa (2019) (BLM) address both
issues by grouping firms into a finite number of latent classes inferred from earnings
distributions, allowing for unrestricted worker-firm interactions. They show that sorting
estimates are large and that firm effects are modest. Yet because BLM’s classes are latent,
they can blur the distinction between wage-setting policies and workforce composition,
and the results remain inherently in-sample—offering limited guidance on why certain
firms pay more or what observable characteristics drive sorting.

This paper. This paper introduces TWICE—Tree-based Wage Inference with Clustering
and Estimation—a framework that models the conditional expectation of wages directly
frommeasurable worker and firm characteristics rather than from latent effects identified
through mobility. Worker observables include education, tenure, age, and occupation;
firm observables include size, productivity, financial structure, and sector. This shift
trades the ability to capture purely idiosyncratic unobservables for three practical advan-
tages: robustness to the sampling noise that plagues AKM estimates in sparse networks;
out-of-sample portability to new workers and firms; and direct interpretability of how spe-
cific characteristics shape wages. Despite relying on flexible machine learning methods,
TWICE retains the two-way decomposition structure of the AKM tradition and produces
directly comparable outputs: variance shares for worker, firm, sorting, and interaction
components.

TWICE. The TWICE procedure has three steps. First, we partition workers and firms into
discrete cells based on observable attributes using supervised decision trees—yielding
interpretable groups such as “mid-tenure, tertiary-educated technicians” or “large, sol-
vent manufacturers.” Second, we estimate the conditional wage function using gradient-
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boosted trees with cross-fitting that respects the two-sided dependence structure of
matched data: workers and firms are split into blocks, and each observation is predicted by
a model trained on data excluding that worker and firm (Chernozhukov et al. 2018; Chiang
et al. 2022). Third, from this estimated function we extract variance decompositions,
sorting patterns, and Partial Dependence and Accumulated Local Effect plots that show
how individual characteristics shape predicted wages.

Applications. Applying TWICE to comprehensive Portuguese administrative data, we doc-
ument three main findings. First, the model achieves substantially better out-of-sample
predictive performance than linear benchmarks (test R2 ≈ 0.50), indicating that it captures
structural features of the wage-setting process rather than noise. Second, our variance
decomposition—based on observable-anchored cells rather than latent effects—reveals a
strong role for sorting on observables (11.6% of wage variance) and modest but nonzero
non-additive interactions (7.3%), compared to 7.2% sorting and no interaction term in
the standard AKM specification on the same data. This pattern is consistent with the
bias-corrected results of Bonhomme, Lamadon, and Manresa (2019) and the latent-class
analysis of BLM: once correlated heterogeneity is modeled flexibly, sorting accounts for
more wage dispersion than the additive AKMmodel suggests, while pure firm effects are
smaller. Third, we find that our observable-based firm classes explain approximately 25%
of the variation in AKM firm effects, confirming that TWICE captures a meaningful com-
ponent of firm pay premia while remaining agnostic about idiosyncratic variation—much
of it estimation error—that dominates AKM estimates in sparse networks.

Interpretability. Akey contributionof TWICE is interpretability. To open the “blackbox” of
machine learning,we apply Partial Dependence Plots (Friedman2001; Goldstein et al. 2015)
andAccumulated Local Effects (Apley and Zhu 2020)—diagnostic tools standard inmachine
learning but, to our knowledge, novel in wage decomposition. These diagnostics recover
economically meaningful patterns: age–wage profiles are concave; returns to tenure vary
by worker qualification; wages rise with firm productivity, consistent with rent-sharing.
Most strikingly, the canonical firm-size wage premium vanishes once worker and firm
observables are flexibly controlled, suggesting that the premium reflects sorting—larger
firms employ higher-skilled workers and have other high-wage characteristics—rather
than a direct effect of size.

Contribution to the literature. Our work makes three principal contributions to the litera-
ture on two-way heterogeneity and wage dispersion.

First, we contribute to the literature on limited mobility bias in AKM estimates. Stan-
dard fixed-effects estimators suffer from an incidental parameter problem that inflates
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firm-effect variance and attenuates sorting estimates (Andrews et al. 2008; Kline, Saggio,
and Sølvsten 2020; Bonhomme et al. 2023; Kline 2024). Our observable-anchored approach
sidesteps thismechanism: because we estimate group-level conditionalmeans rather than
individual fixed effects, the bias does not apply. Consistent with this interpretation, our
variance decomposition yields a sorting share substantially larger than the uncorrected
AKM estimate on the same data.

Second, relative to the latent-class framework of Bonhomme, Lamadon, and Manresa
(2019), we replace latent classes with observable-anchored partitions. BLM clusters firms
using earnings distributions, which can conflate wage-setting policies with workforce
composition; our partitions are functions of measured firm and worker attributes, making
them directly interpretable. Because these partitions are defined by observables rather
than by sample identifiers, they extend naturally to new workers and firms—enabling out-
of-sample prediction and policy-relevant counterfactuals that latent-class or fixed-effect
methods cannot readily support. Despite this shift, we retain AKM-style outputs—variance
shares, sorting matrices—facilitating comparison with the existing literature.

Third, we bring modern machine learning to matched employer–employee data in a
transparent way. We adapt the cross-fitting principle of Chernozhukov et al. (2018) to the
two-way dependence structure of matched data (Chiang et al. 2022), and we interpret the
resulting estimates using Partial Dependence Plots and Accumulated Local Effects. Our
findings connect to a long literature on firm contributions to inequality (Card, Heining,
and Kline 2013; Barth et al. 2016; Song et al. 2019): once observables and their interactions
are modeled flexibly, sorting and non-additive complementarities account for a larger
share of wage dispersion than standard methods suggest.

Outline. The remainder of the paper is organized as follows. Section 2 develops the
framework. Section 3 presents empirical results using Portuguese data. Last, section 4
concludes.

2. A predictive two-way wage structure with observable-anchored partitions

We develop a framework that models wages flexibly as a function of rich worker and
firm observables while summarizing two-sided heterogeneity through feature-anchored
partitions (cells) for workers and firms.

2.1. Objective and approach

Our goal is to model the conditional expectation of wages as a flexible function of observ-
able worker and firm attributes. From this estimated function, we extract interpretable
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summaries—variance decompositions, sorting patterns, and marginal effects—that par-
allel the outputs of the AKM tradition while being anchored in observables rather than
latent effects.

This objective differs from the standard approach in the literature. The AKMmodel
expresses wages as the sum of latent worker and firm fixed effects plus time-varying
controls. Identification relies on exogenous mobility and additivity, and firm effects are
identified only within the largest connected set. AKM has been central to measuring
two-way heterogeneity, but it treats observables as residual controls and does not map
them explicitly into wage premia—limiting both interpretability and out-of-sample use.

The BLM model reduces dimensionality by clustering firms into latent classes and
estimating a finite mixture of worker types conditional on these classes. This relaxes
additivity and, by coarsening the firm space, mitigates limited-mobility bias. However,
latent classes remain functions of earnings distributions rather than of observable firm
characteristics, again limiting interpretability and portability to new firms.1

We take a complementary approach: estimate the conditional expectation function
nonparametrically, summarize it through observable-anchored partitions, and retain
the two-way decomposition structure while gaining interpretability and out-of-sample
portability.

2.2. Population estimands and decomposition

Before detailing the estimation procedure, we formally define the population objects of
interest. Let Yit denote the log wage of worker i at time t, employed at firm j = J(i, t). Let
Zit and X j denote the vectors of observable characteristics for the worker and the firm,
respectively.

We assume the data is generated by a conditional expectation function (CEF)m0, such
that:

Yit = m0(X j,Zit) + uit

where E[uit ∣ X j,Zit] = 0. The functionm0(⋅) captures the mapping from observables to
wages in the population. Our goal is to approximate this function and decompose the
resulting variation into components attributable to worker types, firm types, and their
interactions.

To reduce dimensionality and facilitate economic interpretation, we summarize the
continuous functionm0(⋅) by projecting it onto discrete worker and firm partitions. Fix
integers L and K, and let g : Z→ {1, . . . ,L} and h : X→ {1, . . . ,K} denote candidate worker

1Appendix A provides a deeper review. For a comprehensive treatment, see Kline (2024).
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and firm partition functions. For any pair (g,h), define the corresponding cell means

µℓk(g,h) ≡ E[Yit ∣ g(Zit) = ℓ,h(X j) = k]

We then define the L2-optimal population partitions (g∗,h∗) as the solution to

(1) (g∗,h∗) = argmin
g,h

E[(m0(X j,Zit) − µg(Zit),h(X j)(g,h))
2
]

That is, (g∗,h∗) yields the best step-function approximation to the true conditional expec-
tationm0 among all partitions with L worker groups and K firm groups.2

For notational convenience, write

µℓk ≡ µℓk(g∗,h∗) = E[Yit ∣ g∗(Zit) = ℓ,h∗(X j) = k],

and let µ ≡ E[Yit] denote the grand mean. We decompose each cell mean into worker,
firm, and interaction components as

µℓk = µ +αℓ +ψk + κℓk

where the worker and firm premia are defined via an additive projection to ensure an
orthogonal decomposition. Specifically, (α∗,ψ∗) solve theweighted least-squares problem

(α∗,ψ∗) = argmin
α,ψ
∑
ℓ,k
πℓk (µℓk − µ − αℓ −ψk)

2

where πℓk = Pr g∗(Zit) = ℓ,h∗(X j) = k. This is equivalent to regressing cell means on
worker-group and firm-group indicators, weighted by cell sizes. By construction,∑ℓ πℓα∗ℓ =
0 and∑k πkψ∗k = 0.

The key property of this projection is orthogonality: the interaction term

κℓk = µℓk − µ − α∗ℓ −ψ
∗

k

which captures deviations from additivity at the cell level, is uncorrelated with both α∗

and ψ∗ by construction, ensuring that the variance components sum exactly to the total
without cross-terms.3When κℓk = 0 for all (ℓ, k), the systematic component of wages is
additive in worker and firm types; nonzero values of κℓk reflect complementarities or
mismatch that are specific to particular worker–firm type pairs.

2We do not assume that wages are truly stepwise in (g∗,h∗); instead, these partitions are population
summaries ofm0, which TWICE approximates using tree-based methods in finite samples.

3When the distribution of workers across firms is balanced (πℓk = πℓπk, the projected effects coincide
with the conditional means E[µℓk ∣ g = ℓ]. Under sorting, however, these differ: the projection isolates the
“pure” worker and firm contributions from their correlation induced by assortative matching.
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This yields the following variance decomposition of log wages:

Var(Yit) = Var(αg∗(Zit))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

worker

+ Var(ψh∗(X j))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

firm

+2Cov(αg∗(Zit),ψh∗(X j))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

sorting

+ Var(κg∗(Zit),h∗(X j))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

interaction

+ Var(ξit)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
residual

The residual term is defined as

ξit = Yit − µg∗(Zit),h∗(X j)

so that E[ξit ∣ g∗(Zit),h∗(X j)] = 0. It captures three distinct sources of variation: i) the
pure stochastic error uit, ii) idiosyncratic match effects not captured by the group-level
means, and iii) the approximation error arising from discretizingm0(⋅) into finite cells
(i.e., within-cell heterogeneity). By construction of the additive projection, Cov(α∗,κ∗) =
Cov(ψ∗,κ∗) = 0, so no additional cross-terms appear. This contrasts with a naive decom-
position using marginal means, where cross-covariances between marginal effects and
interactions are generally nonzero under sorting and must be accounted for separately.

The TWICE procedure, described below, estimates these population objects by re-
placing the theoretical minimization in eq. (1) with gradient-boosted decision trees, and
estimating the cell means µℓk via cross-fitted regression. Appendix B provides the formal
derivation of these components from cell means and the consistency conditions for the
estimator.

2.3. Estimation

We estimate the conditional wage functionm0 nonparametrically using gradient-boosted
trees. This choice is driven by two features of wage determination and one of the data
structure.
• Nonlinearity and interactions. Returns to worker characteristics (e.g., education, expe-
rience, occupation) often depend on firm attributes (e.g., size, productivity, solvency).
Trees capture such interactions without requiring pre-specified functional forms or
cross-terms.

• Regularization and generalization. Boosted trees incorporate shrinkage, depth con-
straints, and early stopping, which control model complexity and deliver stable out-of-
sample predictions—essential for interpreting the fitted structure through worker and
firm partitions.

• Dependence in matched employer–employee data. Observations sharing a worker or firm
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identifier are strongly dependent: standard cross-validation would be invalid because
the same identifier could appear in both training and test sets. We address this us-
ing two-way identifier-blocked cross-fitting: workers and firms are each partitioned
into disjoint blocks, and each observation is predicted by a model trained on data
that excludes the block containing that worker and the block containing that firm
(Chernozhukov et al. 2018; Chiang et al. 2022). This yields unbiased out-of-sample fit
measures despite the multiway dependence in matched data.4

Because the fitted model conditions directly on observables, its predictions can be
decomposed into contributions associated with specific measurable traits. We examine
these relationships in Sections 3.5 and 3.6 using Partial Dependence and Accumulated
Local Effects plots, which characterize the fitted associationswithout imposing parametric
restrictions.

2.4. TWICE

We propose Tree-based Wage Inference with Clustering and Estimation (TWICE), a procedure
that estimates the conditional wage function using observables and summarizes two-sided
heterogeneity through observable-anchored partitions (cells) for workers and firms. Let

Yit = m0(X j,Zit) + uit

denote the data-generating process in Section 2.2, and let f denote the cross-fitted gradient-
boosted tree estimator ofm0 described in Section 2.3. TWICE consists of three steps.

I. Firm- and worker-cells from observables. We first build discrete, interpretable partitions
(cells) from observables.

On the firm side, we estimate a supervised tree regression of firm-level mean log
wages Y j on firm covariates X j and use the terminal leaves of a selected tree as firm-cells.
These cells group firms with similar wage-setting behavior conditional on observables
(e.g., “large solvent manufacturers”).

On the worker side, we use the full panel and estimate a tree regression of individual
log wages Yit on time-varying worker covariates Zit (age, tenure, education, occupation,
etc.). The terminal leaves of this tree define worker-cells at the observation level: each (i, t)
is assigned to a cell g(Zit) ∈ {1, . . . ,L} according to its observable characteristics. In the
variance decomposition, worker components are evaluated at these observation-specific
cells g(Zit).

4Dependence may be arbitrarily strong within worker and firm IDs but is assumed weak across distinct
IDs; see Appendix B.
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For bothfirmandworker trees, the number of leaves (depth) is chosenby out-of-sample
performance. Because leaves are functions of observables, cells are directly interpretable
(e.g., “mid-tenure tertiary-educated technicians”).

II. Wage predictor with two-way cross-fitting. We then fit a LightGBM predictor form0(⋅)
using the full observable set and the learned cell indicators. To avoid overfitting and
obtain unbiased out-of-sample predictions, we implement two-way ID-blocked cross-
fitting, following Chernozhukov et al. (2018) and Chiang et al. (2022). We partition worker
IDs into B blocks and firm IDs into B blocks, form B2 validation cells Sab. For each (a,b),
we train on the complement of Sab and predict only for Sab, so that no worker or firm
appears in both training and validation for its own prediction. We select hyperparameters,
including the number of worker and firm cells (granularity), by minimizing this blocked
out-of-sample risk (see Appendix D for details). All folds and holdouts are constructed
within the largest connected set of the mobility graph to maintain comparability with
AKM. Further details on cross-fitting and implementation appear in Subsection 3.2.

III. Descriptive outputs: sorting and variance decomposition. Using the worker- and firm-
cells, we compute the sorting matrix (shares of worker-cells across firm-cells) and decom-
pose log-wage variance into worker-cell, firm-cell, sorting, interaction (cell non-additivity),
and within-cell components, as in Section 2.2. For interpretability, we probe f (⋅) with
Partial Dependence and Accumulated Local Effects to summarize how predicted wages
vary with key firm features (size, revenue per worker, solvency, capital intensity) and
worker features (age, tenure, education/qualification).

Advantages. Our approach assumes that the salient heterogeneity in wages can be well
approximated using observable worker and firm attributes. It is conceptually related to
BLM’s idea of coarsening the firm space, but differs in three important ways.

First, the partitions are observable-anchored and transparent. As discussed in Section 2.3,
cells correspond to explicit combinations of measurable traits, enabling direct economic
interpretation.

Second, the clustering is conditional and supervised. BLM classifies firms by (residu-
alized) earnings distributions; class formation does not directly incorporate rich firm
covariates. We instead let observables drive the partitions: cells are learned from X j (for
firms) and Zi⋅ (for workers) in a supervised way. This reduces the risk of conflating work-
force composition with wage-setting and yields partitions that can be applied to new firms
and workers.

Third, the framework is designed for out-of-sample validity. By combining boosted
trees with ID-blocked cross-fitting, TWICE can handle high-dimensional covariates while
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controlling overfitting in matched employer–employee data.

2.5. Interpretation and identification

While TWICE shares the two-way variance decomposition structure of AKM, the identi-
fication of the components relies on different sources of variation. The standard AKM
model identifies firm effects via worker mobility, relying on the strict exogeneity of moves
conditional on person and firmfixed effects. In contrast, TWICE identifies firm andworker
contributions based on the mapping between realized wages and observable characteris-
tics (X j,Zit).

To formalize the contrast, consider the latent AKM firm effect ψ j. This parameter
captures the time-invariant firm-specific wage premia common to all workers at the firm
j, regardless of its source. We can decompose it as

ψ j = ϕ(X j) + ν j

where ϕ(X j) represents the component that is systematically associated with observable
firm characteristics, and ν j is a residual term. This residual bundles together: (i) genuine
unobserved firm heterogeneity, and (ii) sampling noise inherent in estimating firm effects
from sparse mobility data.

This decomposition highlights the identification trade-off between AKM and TWICE.
AKM target the total firm premiumψ j and, in principle, recovers bothϕ(X j) and ν j. How-
ever, when mobility is limited, the estimated dispersion of firm effects and the estimated
worker–firm covariance are affected by sampling variability: the variance of ψ̂ j is inflated
and the covariance between worker and firm effects is attenuated (Andrews et al. 2008;
Bonhomme, Lamadon, and Manresa 2019).

TWICE, by contrast, does not use the mobility graph to identify firm premia. It esti-
mates the conditional expectation functionm0(X j,Zit) and then summarizes it through
observable-based partitions (g∗,h∗). The resulting firm component in the variance de-
composition captures the part of wage premia that is predictable from observables X j.
Conceptually, this corresponds to ϕ(X j) rather than ψ j: idiosyncratic fluctuations and
firm-specific factors that are orthogonal to X j are absorbed into the residual and interac-
tion terms, rather than into the firm component. Consequently, the firm component in
TWICE should be interpreted as the observable firm wage premium.

This distinction extends directly to the interpretation of sorting. In the AKM frame-
work, sorting is the covariancebetween total latentworker andfirmeffects, 2 Cov(αi,ψJ(i,t)),
so it reflects assortative matching on latent heterogeneity. In TWICE, sorting represents
assortative matching on observables, 2 Cov(αg∗(Z),ψh∗(X)), i.e., the extent to which workers
with high-wage observable attributes match with firms possessing high-wage observable
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attributes.
The cost of this shift is an omitted-variable concern on the firm side. If high-wage

firms pay premia for reasons strictly orthogonal to our observable X j, and these reasons
are not indirectly reflected in observable sorting patterns, TWICE will not attribute that
variation to the firm component. Instead, it will appear in the residual or interaction
terms. In our application, however, the administrative data contain rich financial and
workforce information at the firm level and detailed qualifications on the worker side.
Existing two-way methods primarily exploit mobility to uncover latent heterogeneity and
typically use such observables only as controls. TWICE is designed to complement that
literature by asking howmuch of wage dispersion and sorting can already be accounted
for by this rich observable structure, and by providing a decomposition that is explicitly
framed in terms of observable firmwage premia and assortative matching on observables.

3. An application to Portuguese data

In this section, we showcase an application of the TWICE framework to Portuguese data.
We analyze sorting patterns—the extent to which high-wage workers match with high-
wage firms—and compare our findings to BLM. Additionally, we show how PDPs and ALEs
can display nonparametric relationships between observables in wage determination.

3.1. Data

Sources. We combine two Portuguese administrative datasets from Statistics Portugal.
The matched employer-employee database Quadros de Pessoal (QP) covers the universe
of private-sector firms, providing worker-level information on age, gender, education,
occupation, tenure, and earnings, as well as firm-level information on location, industry,
and employment. We supplement QP with firm financial data from Sistema de Contas
Integradas das Empresas (SCIE), which provides balance-sheet items including revenues,
assets, liabilities, and investment.

Sample. Our analysis spans 2012–2019, providing a recent pre-pandemic window. We
restrict attention to private-sector firms with at least five employees and full-time workers
aged 20–65 with at least two months of tenure. The outcome variable is log hourly wages,
constructed from annual earnings and hours worked. After applying these filters and
retaining only observations in the largest connected set (required for AKM comparabil-
ity), the estimation sample contains approximately 3.4 million worker-year observations,
covering 750,000 unique workers across 96,000 firms.

Table C1 summarizes the panel. Employment grows steadily over the period (firms:
43k to 55k; workers: 350k to 507k), while average log wages rise from 1.97 to 2.10. The
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workforce gradually upskills: the share of tertiary graduates increases from 17% to 22%.
Table C2 reveals substantial cross-industry heterogeneity: finance pays the highest wages
(mean log wage 2.51) and employs the most graduates (72%), while manufacturing and
agriculture sit below the aggregate average.

Covariates. TWICE uses two sets of observable characteristics.Worker covariates Zit in-
clude age, tenure, education, occupation (qualification), and job seniority—time-varying
attributes that capture human capital accumulation and job-specific experience. Notably,
we exclude calendar year from the worker clustering stage, so that workers are grouped
by where they are in their career rather than when they are observed. Firm covariates X j
include size (log employment), productivity (log revenue per worker), financial structure
(solvency ratio, asset composition), investment (R&D, patents, capital intensity), and mar-
ket position (concentration index), along with sector, region, legal form, and calendar
year. Appendix C provides full variable definitions and descriptive statistics.

Mobility and connectivity. AKM identification requires a connected mobility network. In
our sample, workers are employed at 2.2 firms on average, and 21% work at three or more
firms during the panel. The largest connected set retains 99.6% of workers, indicating a
well-connected labor market. To validate the exogenous mobility assumption underlying
the AKM benchmark, Appendix C.4 replicates the event-study design of Card, Heining,
and Kline (2013): wage profiles are flat before job transitions, and gains frommoving up
the firm distribution are symmetric to losses frommoving down, supporting additivity.

3.2. Implementation

This subsection describes how the TWICE framework is implemented in practice, con-
sistent with Section 2.4. The procedure consists of three components: (i) constructing
partitions of firms and workers based on observables, (ii) estimating the wage function
with two-way cross-fitting on the connected set, and (iii) selecting the optimal granularity
of the partitions by out-of-sample risk minimization.

Firm classification. We first construct firm partitions based on observed firm characteris-
tics. Let Y j denote themean log-wage among employees of firm j, andX j the corresponding
firm covariates. For a candidate number of groups K, we estimate a supervised tree-based
model of the form

f̂ K = arg minf ∈ΩK
∑
j
[Y j − f (X j)]

2

whereΩK is the class of regression trees with at most K terminal nodes. The resulting
leaves define firm classes κK( j) ∈ {1, . . . ,K}, which summarize heterogeneity in pay-
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setting conditional on observables such as size, productivity, and sector. We interpret
each class as a group of firms with similar wage-setting behavior.

Worker classification. Analogously, we partition workers into L classes based on their
observable characteristics and log wages. For computational efficiency and to reduce
noise, we first aggregate to the worker level: let Ȳi and Z̄i denote, respectively, the mean
log wage and the vector of averaged time-varying covariates for worker i, combined with
their time-invariant attributes. We then estimate a supervised tree

ĝL = arg min
g∈ΩL

∑
i
[Ȳi − g(Z̄i)]

2 ,

whereΩL denotes the class of regression trees with atmost L leaves. The resulting splitting
rules define an estimated partition function ĝL : Z→ {1, . . . ,L}, which we then apply at
the observation level: each (i, t) is assigned to group

ℓit = ĝL(Zit) ∈ {1, . . . ,L}

based on its period-specific covariates. Because some components of Zit are time-varying
(e.g., age, tenure), the assigned worker class ℓit may change over time for the same indi-
vidual.

An important design choice concerns the treatment of calendar time in the cluster-
ing stage. Worker clusters are formed using career-stage characteristics—age, tenure,
education, and occupation—but not calendar year. This means workers are assigned to
clusters based on where they are in their working life rather than when they are ob-
served: a 35-year-old with 10 years of tenure will be in the same worker cluster whether
observed in 2012 or 2019. Firm clusters, by contrast, incorporate calendar year alongside
balance-sheet and structural characteristics. This allows the same firm to move between
clusters as macroeconomic conditions change. The asymmetric treatment of time reflects
the economic structure of wage determination: individual worker productivity depends
primarily on accumulated human capital (career stage), while firm wage policies respond
to business cycle conditions and evolving labor market tightness (calendar time).

Wage prediction and model selection. Given the firm and worker partitions, we estimate
the wage function on the largest connected set of the mobility graph using two-way cross-
fitting as described in Section 2. For each candidate pair (K,L), we compute the blocked
out-of-sample loss L(K,L) defined in Appendix D and select

(K∗,L∗) = argmin
K,L

L(K,L)
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In a final step, we re-estimate the model on the training portion of the connected set
using (K∗,L∗) and evaluate its predictive performance on an external firm-level holdout:
a random subset of firms, and all their associated worker–year observations, that are ex-
cluded from both training and tuning. This holdout provides an out-of-sample benchmark
distinct from the cross-fitting blocks used for model selection.

3.3. Out-of-sample fit

We evaluate predictive performance using an external firm-level holdout. After restricting
to the connected set, we draw a random subset of firms, sampleworkerswithin those firms,
and exclude all corresponding observations from anymodel fitting, including cross-fitting
and hyperparameter tuning. All tuning and cross-fitting (Section 2) are conducted on the
remaining firms. Once the tuning parameters are selected, we re-estimate each model on
the training firms and compute performance on the held-out firms. In machine-learning
parlance, the cross-fitting folds play the role of a validation sample, while the firm holdout
serves as a final test sample.

As baselines, we estimate a sequence of OLSmodels on the same sample and covariates
used by TWICE.We report both training and testmetrics, with emphasis on the test results.
The baselines are: (i) a “simple” OLS with an age polynomial (normalized to be flat at 40)
and year fixed effects; (ii) an OLS with the full set of continuous covariates and categorical
indicators; and (iii) OLS variants that add polynomial expansions of continuous covariates
up to degree three.5 The TWICE model uses the same covariates plus the worker- and
firm-cell indicators and is estimated with two-way cross-fitting.

Results. Table 1 compares the out-of-sample predictive performance of the OLS baselines
and TWICE. Introducing polynomial flexibility substantially improves in-sample fit for
OLS, but only modestly improves out-of-sample accuracy: test R2 rises from 0.04 to about
0.40 at degree 3. Evenwith selective polynomialization and orthogonal bases, linearmodels
reach a plateau in explanatory power, suggesting that key nonlinearities and interactions
cannot be captured by additive polynomial terms alone.

In contrast, the TWICE model achieves a markedly better out-of-sample performance,
with a test R2 ≈ 0.50 and a test MSE roughly 15% lower than the best OLS variant. This gap
persists despite TWICE’s greater flexibility, underscoring the effectiveness of its tree-based
regularization and cross-fitting scheme in balancing flexibility and parsimony. Unlike the
higher-degree OLS models, which improve fit primarily in-sample, TWICE generalizes
smoothly to new firms and workers, indicating that it captures structural features of the

5To avoid numerical instabilities and spurious collinearity, higher-order specifications only apply poly-
nomial expansions to a restricted subset of continuous variables (age, tenure, log-size, log-revenue) while
leaving other predictors linear.
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TABLE 1. Test sample performance of the models

Train Test

Model MSE R2 MSE R2

OLS 0.166 0.039 0.174 0.043
OLS, degree-1 poly 0.098 0.431 0.106 0.415
OLS, degree-2 poly 0.096 0.446 0.109 0.405
OLS, degree-3 poly 0.095 0.447 0.108 0.408
TWICE 0.076 0.566 0.092 0.493

Note: This table reports out-of-sample performance metrics for the prediction of log hourly wages on the
Portuguese linked employer-employee data (2012–2019). The test set is constructed by holding out a random
sample of firms (and all their workers) that were not used in model training or hyperparameter tuning. MSE
is the Mean Squared Error. R2 is the squared correlation between observed and predicted wages in the test set.
“OLS” refers to a linear regression with age polynomials and year fixed effects. Higher-degree OLS models
include polynomial expansions of continuous covariates up to the specified degree. “TWICE” refers to the
gradient-boosted tree ensemble estimated via two-way cross-fitting.

wage-setting process rather than sampling noise.
The robust generalization of TWICE also enhances the interpretability of the partial

dependence plots (PDPs) presented in Subsection 3.5. Because these plots rely on amodel’s
ability to approximate true conditional expectations, their credibility depends on out-of-
sample performance. The consistent predictive accuracy of TWICE provides confidence
that the PDPs reflect genuine wage–covariate relationships rather than overfitted artifacts.

3.4. Sorting

We now examine how the model’s estimated worker and firm heterogeneity translate
into sorting patterns. Following the logic of Bonhomme, Lamadon, and Manresa (2019),
we analyze how the distribution of worker types varies across firm types, using the cells
recovered by TWICE. Unlike the latent worker and firm types in the BLM framework, these
classes are data-driven partitions formed by the TWICE trees based on covariates. A firm
class should be read as a group of firms with similar observable profiles and, therefore,
similar predicted wage premia for a generic worker; a worker class collects individuals
with similar observable profiles and, hence, similar predicted wage schedules across
firms.

Figure 1 displays the composition of worker types across the ordered firm spectrum.
The pattern reveals clear evidence of positive assortativematching: low-wage firms (on the
left) predominantly employ lower-type workers, while the share of higher-type workers
increases smoothly toward the right end of the firm distribution. This monotonic gradient
implies that firm heterogeneity and worker heterogeneity are mutually reinforcing in
wage determination—high-paying firms systematically attract and retain more productive
workers.
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FIGURE 1. Worker–firm sorting patterns
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Note: Heatmap showing the joint distribution of worker and firm classes recovered by TWICE. The x-axis
orders firm classes from lowest to highest average firm premium (ψh). The y-axis represents the composition
of the workforce within that firm class. Colors represent worker types ordered by average worker effect (αg),
from dark (low wage) to light (high wage). A diagonal pattern indicates positive assortative matching on
observables: high-wage firm types disproportionately employ high-wage worker types.

Comparedwith the discrete-typemodels of Bonhomme, Lamadon, andManresa (2019),
our implementation uses a relatively fine grid of worker and firm classes. Tree-based par-
titioning and LightGBM smoothing make such fine partitions computationally tractable,
while the number of leaves is disciplined by out-of-sample risk minimization. The re-
sulting step-function approximation yields a finely graded, data-driven representation of
the joint distribution of worker and firm heterogeneity: rather than a handful of latent
classes, we obtain a dense ranking of observable types, where the composition of worker
classes evolves gradually along the firm spectrum. We interpret this as a quasi-continuous
hierarchy of matches—an approximation to an underlying smooth distribution of wage
premia—consistent with a positive but imperfect correlation between worker and firm
effects.

3.5. Partial dependence plots

A central advantage of the TWICE framework is its ability to combine strong predictive
performance with economically interpretable relationships. Section 3.3 shows that, on a
firm-level holdout sample, TWICE attains substantially higher test R2 and lower test MSE
than flexible OLS benchmarks. This does not turn TWICE into a structural model, but it
does suggest that the fitted wage surface captures systematic regularities in the data rather
than sample-specific noise. We use this out-of-sample performance as a credibility check
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when interpreting model-based summaries such as Partial Dependence Plots (PDPs).
Let Vit = (XJ(i,t),Zit) denote the full vector of firm and worker covariates for ob-

servation (i, t), and let PV be the joint distribution of Vit. For a subset of coordinates S
(for example, age or tenure), write VS for the corresponding subvector and V−S for the
remaining coordinates. Given the cross-fitted predictor f̂ from Section 2.3, the partial
dependence function for VS is defined as

f S(vS) = EV−S[ f̂ (vS,V−S)] = ∫ f̂ (vS, v−S)dPV−S(v−S)

where PV−S is the marginal distribution of V−S under PV .
The function f S(vS) can be read as the average predicted log wage at feature value vS,

integrating over the empirical distribution of all other covariates. It therefore provides a
nonparametric,model-based ceteris paribus profile: it traces howpredictedwages varywith
a given attribute while holding the rest of the feature vector at its observed distribution,
without imposing a pre-specified functional form. In what follows, we interpret these
PDPs as descriptive summaries of the estimated conditional wage function, not as causal
responses to changes in the underlying covariates.

In our empirical implementation, we report a reference-point version that fixes non-
focal covariates at representative values. Let ṽ−S collect the sample medians of non-
focal continuous covariates and the sample modes of non-focal categorical covariates
(computed on the estimation sample). For any displayed subgroup d (e.g. qualification ×
gender × education), let D denote the set of subgroup indicators and define

f̃ S(vS;d) = f̂ (vS,d, ṽ−(S∪D)).

This yields a ceteris paribus profile evaluated at a commonbaseline. AppendixD.4 provides
full implementation details (grid construction, trimming, and cross-fitted averaging). As
throughout, these plots are descriptive summaries of the fitted conditional wage surface,
not causal effects.

In the next subsections, we present PDPs for key determinants such as worker age,
tenure, and firm size to highlight the nonlinear and interactive structure ofwage formation
uncovered by TWICE.

Age, gender, and education, by qualification. Figure 2 presents PDPs of predicted log wages
by age, conditional on the worker qualification classes identified in the TWICE cluster-
ing stage. Each panel corresponds to a qualification type—generic worker, specialized
worker, and manager—and plots age–wage profiles separately by gender and across three
education levels: at most primary, secondary, and at least a bachelor’s degree.

Conditioning on qualification reveals substantial heterogeneity in wage dynamics that
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FIGURE 2. PDP for age, gender, and education – by qualification
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Note: Partial Dependence Plots showing the predicted log hourly wage (y-axis) as a function of age (x-
axis). Panels are stratified by the worker qualification level determined by the model (Generic, Specialized,
Manager). Lines are separated by gender (color) and education level (facets). Predictions represent the
marginal effect of age, averaging over the empirical distribution of all other worker and firm characteristics
in the model.

17



would be obscured in a pooled analysis.
For generic workers (Figure 2A), wage profiles are moderately concave, with returns

to experience flattening after the mid-forties, consistent with standard human-capital
accumulation (Mincer 1974; Card, Cardoso, and Kline 2016). Education premiums are
visible and stable across the life cycle, particularly for tertiary education. The slope of the
age–wage profile is similar for men and women, though a persistent level gap remains
throughout the working life.

Among specialized workers (Figure 2B), the model captures steeper early-career wage
growth, especially for degree holders. The gender wage gap widens noticeably after the
late thirties, coinciding with the prime career progression phase and consistent with the
literature on gender differences in promotion and job mobility (e.g. Bertrand 2013). For
less-educatedworkers, the profiles are flatter and converge at lowerwage levels, indicating
more limited returns to experience.

Formanagers (Figure 2C), age–wage profiles are markedly steeper and continue rising
into the fifties, suggesting sustained returns to tenure and firm-specific human capi-
tal (Baker, Gibbs, and Holmstrom 1994; Lazear 2018). The observed stepwise structure
likely reflects the tree-based partitioning of TWICE, capturing discrete wage thresholds
associated with promotions or responsibility levels—features that smooth parametric
specifications would obscure. The divergence between men and women is largest in this
group: while early-career trajectories overlap, male managers’ wages rise faster and for
longer, producing the widest absolute gender gap at older ages and higher education
levels.

Tenure, education, and qualification. We next investigate the returns to firm-specific
human capital by examining the relationship between tenure and predicted wages, as
shown in Figure 3. The figure plots predicted log wages against months of tenure (on a
logarithmic scale), conditioning on worker qualification and education level. This allows
us to assess how the value of firm experience differs across worker types—a central
question in the literature on human capital and internal labor markets (Topel 1991).

The results reveal substantial heterogeneity in the returns to tenure. For generic workers,
wage profiles are nearly flat, suggesting limited firm-specific learning and a predomi-
nance of general, transferable skills. For specialized workers, the profiles become steeper,
indicating that firm-specific skills and experience play a larger role in pay growth. Among
managers, the relationship between tenure and predicted wages is clearly positive and
concave, with steep early gains that taper gradually—consistent with models of internal
promotion and long-term incentive contracts (Baker, Gibbs, and Holmstrom 1994; Lazear
2018).

A notable feature across all qualification groups is a short initial dip in predicted wages
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FIGURE 3. PDP for tenure, education, and qualification

Note: Partial Dependence Plots derived from the TWICEmodel. Each panel illustrates the marginal relation-
ship between predicted log-wage (y-axis) and tenure in months (x-axis, log scale), conditional on education
level (color) and worker qualification (facet). Predictions are averaged over the empirical distribution of all
other worker and firm characteristics.

for workers with less than one year of tenure. A simple probationary-wage story could
account for lower initial pay, but the observed declinewithin the first fewmonths is unlikely
to be causal. It likely reflects a compositional effect specific to Portugal’s dual labormarket,
where a large share of new hires enter on temporary or subsidized traineeship contracts
(estágios) with below-market pay (Nunes et al. 2023). These workers disproportionately
populate the lowest-tenure segment, temporarily pulling down average wages at the
5–10 month mark. As such contracts expire or convert to permanent positions, the wage
profile rises sharply thereafter. From a theoretical standpoint, the same pattern may
also reflect compensating differentials: workers accept lower initial pay in exchange for
firm-provided training (Gregory 2023) or future mobility opportunities (Del Prato 2024).
Both mechanisms are consistent with a positive long-run slope of tenure returns once the
early probationary phase is over.

Firm size, education, and qualification. We conclude by revisiting the firm-size wage
premium, a canonical finding in empirical labor economics. Figure 4 plots predicted log
wages against firm size (log scale), conditional on worker qualification and education.
This suggests that the conventional firm-size wage premium largely reflects compositional
differences and productivity differentials: larger firms employ more educated workers
and generate higher revenue per worker, but once these attributes are accounted for, the
TWICE model shows no residual size-related wage advantage.

Crucially, this result is not an artifact of collinearity betweenfirm size and total revenue.
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FIGURE 4. PDP for firm size, education, and qualification

Note: Partial Dependence Plots showing the predicted log hourly wage as a function of firm size (log
number of workers). Panels are stratified by worker qualification. Lines represent education levels. The
steepness of the curve indicates the return to firm-specific size, holding all other factors (including firm
per-worker revenue) constant at their sample averages. The flat slopes indicate that, once productivity and
worker composition are held constant, firm size itself has negligible predictive power for wages.

Because size, revenue, and productivity (revenue per worker) are mechanically linked,
care must be taken in defining the ceteris paribus condition. When generating these plots,
we hold revenue per worker (productivity) fixed at its sample median while varying firm
size. Consequently, the flat profiles in Figure 4 shows that firm size has no predictive
power independent of productivity and worker composition: expanding the workforce
without a corresponding increase in productivity yields no wage premium in our model.

Across all qualification groups, predicted wages remain essentially flat—or even de-
cline slightly—as firm size increases. Education and qualification continue to strongly
stratify wage levels, but the slope of the firm-size profile is close to zero throughout. This
suggests that the conventional firm-size wage premium largely reflects compositional
differences: larger firms employ more educated and higher-qualified workers, but once
these attributes and other firm observables (e.g., productivity, sector, and capital inten-
sity) are accounted for, firm size itself carries little independent predictive power. For
managers, the mild decline at the largest firm sizes may reflect pay compression in highly
structured corporate environments, where hierarchical distance and centralized wage
policies limit individual rent sharing (Card et al. 2018). Thus, the TWICE model provides a
more nuanced interpretation of the “firm-size premium”: it is not a direct causal effect
of size but an emergent outcome of sorting and correlated firm characteristics already
captured by the model’s flexible structure.
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3.6. Accumulated Local Effects

PDPs provide a useful summary of average model behavior, but they can be misleading
when predictors are strongly correlated. By construction, a PDP for a feature X j averages
f̂ over themarginal distribution of the remaining covariates X

− j, evaluating the model at
combinations (x j,x− j) that may be rare or never observed in the data. When features are
correlated (e.g., age and tenure), this implies extrapolating the model off the empirical
support, so the PDP need not coincide with the more natural target E[Y ∣ X j = x j].

To address this limitation, we complement the PDPs with Accumulated Local Effects
(ALE) plots, which summarize the local influence of a feature on the prediction while
respecting the joint distribution of the covariates. For a continuous feature X j, let X =
(X j,X− j) and f̂ denote the fitted prediction function. The first-order ALE function is
defined as

ALE j(x) = ∫
x

x(0)j
EX− j ∣X j=z

⎡⎢⎢⎢⎢⎢⎣

∂ f̂ (X j,X− j)
∂x j

∣ X j = z
⎤⎥⎥⎥⎥⎥⎦
dz

where x(0)j is the lower bound of the observed support of X j. Intuitively, ALE j(x) accumu-

lates the average local marginal effect of X j on predicted wages at X j moves from x(0)j to
x, averaging over the conditional distribution of the remaining covariates. In practice,
we approximate the derivative by finite differences and the conditional expectation by
within-bin averages, so the resulting curve is defined only where the data are dense.

ALE plots thus quantify how small local changes in a feature shift predicted log-wages
on average, accumulated along the empirical distribution of that variable. Unlike PDPs,
ALEs do not extrapolate beyond the data and remain robust under strong feature correla-
tions—a common feature of employer–employee datasets where variables such as firm
size, productivity, and capital intensity are highly collinear.

All ALEs are computed using the final TWICE LightGBMmodel described in Section 3.2,
with the same cross-fitted structure used in the PDP analysis. Together, the PDPs and
ALEs provide complementary perspectives: the former highlight average global relation-
ships, while the latter trace local, data-supported sensitivities of predicted wages to key
covariates.

ALEs for tenure, productivity, and age. Figure 5 reports Accumulated Local Effects (ALEs)
for three covariates: tenure, revenue per worker, and age. ALEs aremean–centered partial
effects, so each curve is interpreted as the deviation (in log points) of predicted wages
from their average as the focal variable varies locally over its observed support.

Panel 5A shows a modest dip at very short tenures (on the order of a few months)
followed by a steady rise that becomes pronounced beyond roughly one year. The early
trough is consistent with institutional features of the Portuguese labor market—e.g., the
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FIGURE 5. Accumulated Local Effects (ALEs) for tenure, productivity, and age

Note: Accumulated Local Effects (ALE) plots for three continuous covariates. Unlike PDPs, ALEs calculate
marginal effects locally (using data within a neighborhood) to avoid evaluating the model on unrealistic com-
binations of correlated covariates (e.g., high tenure with young age). The y-axis represents the accumulated
change in log wages relative to the average prediction.

prevalence of fixed-term traineeships or probationary arrangements at below-standard
pay—after which wages increase with firm-specific experience. By five to ten years of
tenure the cumulative ALE is clearly positive, indicating meaningful firm-specific returns.

Panel 5B displays a monotone, concave profile in log(revenue per worker): higher
productivity per worker is associated with higher predicted wages, with the marginal
effect tapering at the very top. This is consistent with rent-sharing or efficiency-wage
mechanisms and provides a clean benchmark for firm “quality” that is less entangled with
size per se.

Panel 5C recovers a familiar concave age–earnings profile: the ALE rises steeply
through the late 20s and 30s, flattens in the 40s, and levels off thereafter. The satura-
tion at older ages is consistent with standard human-capital and internal-labor-market
models.

Taken together, these ALEs complement the PDP evidence. The tenure and age profiles
validate classic human-capital patterns in a way that is robust to feature correlation,
while the strong positive gradient in revenue per worker clarifies that the negative slope
observed in the firm-size PDPs is not a general property of “firm quality” but reflects
conditioning choices and the joint distribution of size and productivity in the data.

3.7. Variance decomposition

Section 2.2 introduced the population-level variance decomposition implied by the TWICE
framework. TWICE partitions workers and firms using observable characteristics, es-
timates the corresponding cell means µℓk, and decomposes Var(Y) into worker, firm,
sorting, interaction, and residual components via additive projection. The additive AKM
model and the static BLM model deliver analogous decompositions, but differ in how
worker and firm heterogeneity are represented. AKM relies on latent individual and firm
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TABLE 2. Variance decomposition of log wages under AKM, BLM (static), and TWICE

AKM BLM (static) TWICE

Component Var. Share Var. Share Var. Share

Worker effect / group 0.103 0.592 0.086 0.500 0.048 0.276
Firm effect / group 0.034 0.195 0.009 0.052 0.015 0.087
Sorting 2Cov(α,ψ) 0.013 0.072 0.034 0.195 0.020 0.116
Interaction Var(κgh) — — — — 0.013 0.073
Within-group variance 0.022 0.124 0.044 0.254 0.077 0.448

Total variance Var(Y) 0.174 1.000 0.172 1.000 0.172 1.000

Note: Variance decomposition of log hourly wages estimated on the largest connected set. AKM: standard
two-way fixed-effects model with individual worker and firm effects. BLM (static): latent-class model of
Bonhomme, Lamadon, and Manresa (2019) with K = 10 firm classes and L = 6 latent worker types estimated
via EM. TWICE: observable-anchored partitions with K = 512 firm classes and L = 512 worker classes, selected
by minimizing blocked out-of-sample prediction error (Table D1). Worker and firm effects are obtained via
additive projection (weighted two-way ANOVA on cell means), ensuring orthogonality between marginal
effects and the interaction term. The interaction term Var(κgh) captures non-additive complementarities
unique to specific worker-firm cell combinations. Within-group variance includes unobserved heterogeneity,
idiosyncratic match effects, and measurement error.

fixed effects, while BLM estimates latent worker and firm classes and allows unrestricted
dependence between them.

We now compare how the three frameworks allocate wage dispersion across these
components.

Results. Table 2 reports the variance decomposition results for the AKM, BLM (static),
and TWICE models side by side. All three refer to the same wage variable and sample,
yielding a nearly identical total variance of approximately 0.17.6

In the standard AKM specification, worker fixed effects account for about 60% of
total variance, firm effects for 20%, and sorting for 7%. The static BLMmodel reallocates
variance across components once correlated heterogeneity is allowed: the worker share
declines to 50%, the pure firm share to about 5%, and sorting increases to roughly 20%.

The TWICE decomposition yields notably different shares: worker groups account for
28% of variance, firm groups for 8.7%, sorting for 11.6%, and interactions for 7.3%. The
within-group residual is 45%, larger than in AKM (12%) or BLM (25%).

Interpreting the differences. The lower worker and firm shares in TWICE relative to AKM
and BLM reflect a fundamental difference inwhat the groups capture. AKMuses individual
fixed effects—each worker is their own “group”—so worker heterogeneity mechanically

6AKM variance is computed on the subsample that keeps only observations with both worker and firm FE
estimates. This explain the tiny discrepancies between AKM variance and the others.
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absorbs all persistent individual-level variation. BLM estimates latent worker types via
maximum likelihood, optimizing the type assignments to explain wage variation. Al-
though BLM uses few types, these are endogenously chosen to maximize explanatory
power. TWICE groups workers by observable characteristics, which are interpretable but
imperfect proxies for latent ability—two workers in the same TWICE cell may have very
different true productivities.

TWICE’s firm share (8.7%) is comparable to BLM’s (5.2%), suggesting that observable
firm characteristics capture a similar amount of systematic firm-level variation as BLM’s
latent classes. Both are well below AKM’s 19.5%, which includes firm-specific noise that
does not generalize out of sample.

The interaction term. The TWICE interaction component—Var(κgh), accounting for 7.3%
of variance—captures non-additive complementarities between observable worker and
firm types. This share is modest but indicates that some worker-firm combinations yield
wages that deviate systematically fromwhat additiveworker and firmeffectswould predict.

The small interaction share is consistent with findings in Bonhomme, Lamadon, and
Manresa (2019), who document “strong sorting and weak complementarities” in Swedish
data. In their reallocation exercise, randomly reassigning workers across firms changes
mean log-wages by only 0.5%, and adding interactions to their model improves R2 by less
thanonepercentagepoint. Our results suggest a similar patternholds for Portugal:workers
sort substantially on observables, but conditional on this sorting, the wage function is
approximately additive.

Thewithin-group residual. TWICE’swithin-group variance (44.8%) is larger than inAKMor
BLM because observable characteristics provide coarser descriptions of worker and firm
heterogeneity than individual fixed effects or optimized latent types. This residual includes:
(i) unobservedworker ability within demographic cells, (ii) unobserved firmheterogeneity
within balance-sheet cells, (iii) idiosyncratic match effects, and (iv) measurement error.

The 44.8% within-cell share should not be interpreted as “unexplained” variance in
the sense of model failure. Rather, it reflects the deliberate trade-off in TWICE between
interpretability (groups defined by observables) and explanatory power (variance cap-
tured). The between-cell component represents the share of wage dispersion attributable
to observable worker and firm characteristics and their interaction—a quantity directly rel-
evant for policy analysis. The fact that the cross-fitted model achieves high out-of-sample
accuracy (R2 ≈ 0.50, Table 1) confirms that observables explain a substantial share of
systematic wage variation.

Contrasts across models. Two contrasts emerge.
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First, relative to AKM, both BLM and TWICE attribute a smaller share of dispersion to
pure worker heterogeneity: 60% in AKM, 50% in BLM, and 28% in TWICE. For BLM, this
reflects the reallocation of variance to sorting once correlated heterogeneity is modeled.
For TWICE, it additionally reflects that observable characteristics are imperfect proxies
for latent ability.

Second, the role of sorting increases as the model allows for richer dependence be-
tween worker and firm heterogeneity. Sorting rises from 6% in AKM to 20% in BLM and
to 12% in TWICE. The TWICE sorting component should be interpreted as assortative
matching on observables: because worker and firm types are functions of (Z,X), any
systematic association between worker and firm characteristics that affects wages is re-
flected in Cov(αg,ψh). The lower sorting share in TWICE relative to BLM (12% vs. 20%)
likely reflects that BLM’s latent types capture unobserved dimensions of sorting that do
not project onto our observable covariates.

What TWICE adds. Relative to AKM and BLM, the main contribution of TWICE is not that
it reverses their qualitative message—our results are broadly consistent with Bonhomme,
Lamadon, and Manresa (2019) and Bonhomme et al. (2023): pure firm effects are modest
once sorting is modeled flexibly, and complementarities are weak. What TWICE adds is:
a. Anchoring heterogeneity in observables.Worker and firm premia are functions of rich,

interpretable covariates rather than purely latent effects. This lets us link variance
components, sorting, and interactions directly to balance-sheet variables and work-
force composition, an information set that the existing literature largely treats as
residual controls.

b. A clean interaction component. By projecting cell means onto additive worker and
firm effects, TWICE isolates a well-defined interaction term κ∗gh that is orthogonal to
both margins. The interaction share (7.3%) quantifies non-additive complementarities
between observable worker and firm types—a quantity that AKM cannot estimate by
construction. Our finding of small but nonzero interactions is consistent with BLM’s
conclusion of “weak complementarities” in matched employer-employee data.

c. Out-of-sample, policy-relevant structure. Because the decomposition is built from a
predictor that generalizes well to held-out firms, the components can be used to speak
about new firms and workers with given observables (Section 3.3), rather than only
about units in the mobility graph. This is useful for counterfactual or policy exercises
that shift the distribution of observables (e.g., productivity or education) rather than
the latent effects.

Viewed thisway, TWICE sharpens and reinterprets the existing variance-decomposition
results: it confirms that sorting is quantitatively important, shows that a meaningful share
of dispersion comes from observable interactions between worker and firm traits, and
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maps both patterns into rich administrative observables that previous approaches leave
largely unused.

Robustness. As a robustness check, we examine whether the construction of the firm par-
tition depends on the choice of the firm-level target used in the first-stage tree. Appendix
E reports results obtained when the firm tree is retrained using (i) median wages and (ii)
firm-level averages of cross-fitted residuals from a worker-only model. The resulting vari-
ance decompositions are very similar to the baseline, and the predicted firm components
exhibit a very high correlation with the baseline specification. This confirms that our
main findings are not driven by the specific choice of target used to form the firm types.

3.8. Concordance with AKM fixed effects

A natural question is whether the observable-anchored TWICE partitions capture the
same worker and firm heterogeneity that AKM identifies through individual fixed effects.
To assess this, we compute η2: the share of cross-sectional variance in AKM fixed effects
explained by TWICE class membership. For workers, this asks: howmuch of the variation
in individual AKM effects α̂i is accounted for by knowing which TWICE cell a worker
belongs to? For firms, we weight by the number of worker-year observations, so that η2

reflects the explanatory power for the typical worker rather than the typical firm.
Figures 6Aand 6Bdisplay the results. TWICEworker classes explain 40%of the variance

in AKM worker effects, indicating that observable characteristics—age, tenure, education,
and occupation—capture a substantial share of persistent worker heterogeneity. The
remaining 60% reflects unobserved ability differences within demographic cells: two
workers with identical observables may have very different productivities.

On the firm side, TWICE classes explain around 25% of the observation-weighted
variance in AKM firm effects. While lower than for workers, this concordance must be
interpreted in light of the substantial sampling noise in AKM firm estimates. In sparse
mobility networks, a large fraction of the variance in ψ̂ j reflects estimation error rather
than true firmwage premia (Kline, Saggio, and Sølvsten 2020; Bonhomme et al. 2023). The
25% captured by TWICE likely understates the share of true firm heterogeneity explained
by observables, since the denominator includes noise that no observable could predict.

This interpretation is supported by TWICE’s out-of-sample performance. Despite
explaining only 25% of the variation in ψ̂ j, TWICE achieves substantially higher predictive
accuracy for wages than flexible OLS benchmarks (Table 1). The variation in AKM firm
effects that TWICE misses appears to consist largely of sampling noise and idiosyncratic
match effects that do not generalize, whereas TWICE captures the systematic component
of firm wage policies anchored in balance-sheet observables.

Overall, the comparison confirms that TWICE partitions recover the predictable,
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FIGURE 6. Distribution of AKM effects across TWICE classes

A. Distribution of AKM worker effects across TWICE worker classes
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B. Distribution of AKM firm effects across TWICE firm classes
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Concordance between observable-anchored TWICE partitions and latent AKM fixed effects. Panel A: Distri-
bution of estimated AKM worker fixed effects (α̂i) within each TWICE worker class, ordered by class mean.
Panel B: Distribution of estimated AKM firm fixed effects (ψ̂ j) within each TWICE firm class, ordered by class
mean. The red line connects class means. η2 reports the share of variance in AKM fixed effects explained by
TWICE class membership. For workers, each individual receives equal weight (η2 = 0.40). For firms, each
firm is weighted by its number of worker-year observations (η2 ≃ 0.25), so the statistic reflects explanatory
power for the typical worker.

observable-driven component of worker and firm heterogeneity. The partitions provide
interpretable groups that align with the persistent structure in wages without relying on
mobility-identified latent effects.

4. Conclusions

This paper develops TWICE, a framework that integrates machine learning with the two-
way decomposition tradition in matched employer–employee data. Rather than relying
on latent worker and firm effects identified through mobility, TWICE models the condi-
tional expectation of wages given rich observable characteristics, constructs observable-
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anchored worker and firm partitions, and summarizes wage dispersion through a de-
composition into worker components, firm components, assortative matching, and non-
additive interactions.

Applied to Portuguese administrative data, TWICE delivers high out-of-sample pre-
dictive accuracy, indicating that the estimated conditional wage function captures stable
features of the wage structure rather than overfitting noise. The resulting variance de-
composition reveals that assortative matching on observables accounts for 10% of wage
variance—compared to 6% in standard AKMon the same data—while non-additive worker–
firm interactions contribute an additional 5%, a component that additive AKMmodels
cannot capture by construction. These findings complement recent evidence showing
that conventional fixed-effects estimators understate sorting and impose overly restrictive
additive structure.

A key advantage of TWICE is its interpretability. Observable-anchored partitions allow
us to characterize worker and firm heterogeneity in economically meaningful terms, and
Partial Dependence and Accumulated Local Effects plots provide transparent diagnostics
of how wages vary with specific attributes. Because partitions are defined by observables
rather than sample identifiers, the framework extends naturally to new workers and
firms—enabling out-of-sample prediction and policy-relevant counterfactuals that latent-
class or fixed-effect methods cannot readily support.

TWICE trades the ability to capture purely idiosyncratic unobserved heterogeneity for
robustness to limitedmobility and sampling noise. The framework isolates the component
of firm pay policies predictable from observables, relegating idiosyncratic variation to the
residual. Although we do not provide formal inference for the variance shares, extend-
ing recent results on inference under multiway clustering to this setting is a promising
direction for future work.

Overall, TWICE provides a flexible, transparent, and out-of-sample-valid approach to
analyzing wage dispersion in matched data. The general strategy—using supervised learn-
ing to form interpretable partitions and combining themwith cross-fitted prediction—may
prove useful in other settings with two-sided heterogeneity, such as credit markets, health
care, or education. Integrating TWICEwith causalmethods to study policy counterfactuals
or structural complementarities is a natural avenue for future research.
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Appendix A. A brief review of the existing methods

The analysis of wage formation with two-way heterogeneity has evolved through different
approaches. Here, we focus on the standard Abowd, Kramarz, and Margolis (1999) (AKM)
model and the recent refinement by Bonhomme, Lamadon, and Manresa (2019) (BLM).

A.1. The AKMmodel

Abowd, Kramarz, and Margolis (1999) introduced a fixed effects wage model that can be
expressed as:

Yit = αi +ψ j(i,t) +X′itβ + εit

where Yit denotes worker i’s log-wage in year t, j(i, t) ∈ {1, . . . , J} identifies the firm
employing worker i at t, Xit includes control variables—often an age polynomial and time
effects.7

Identification relies on two assumptions. First, exogenous mobility: conditional on
observables, worker moves are orthogonal to the idiosyncratic error εit. This implies that,
absent firm effect differences, job changes would not systematically affect wages. Second,
additivity: worker and firm components enter additively, ruling out complementarities
between αi and ψ j(i,t). AKM effects are identified only on the largest connected set of the
employer–employee mobility graph (Abowd, Creecy, and Kramarz 2002). Intuitively, when
two firm groups are not linked by flows, their relative levels are not pinned down.

A.2. The BLMmodel

Bonhomme, Lamadon, and Manresa (2019) (BLM) address the dimensionality and ad-
ditivity of AKM by grouping firms into a finite number of latent classes and modeling

7Following Card et al. (2018), implementations typically use an age polynomial normalized to be flat at a
reference age and exclude the linear term to avoid collinearity with worker and year fixed effects.
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worker heterogeneity using a finite mixture of unobserved types. This allows for rich,
unrestricted interactions between worker and firm heterogeneity.

BLM proposes a two-stage approach to overcome the computational challenges of
simultaneous estimation. First, they use k-means clustering on firm-level empirical earn-
ings distributions to assign each firm j to one of K classes. Second, conditional on these
class assignments, they estimate a finite mixturemodel where the distribution of earnings
depends on the interaction between a worker’s latent type and their employer’s class. For
example, in their application, the mean and variance of log-earnings are allowed to differ
for each worker type-firm class pair.

They estimate this second stage using an Expectation-Maximization (EM) algorithm
to handle the latent nature of the worker types. This approach parsimoniously models
worker heterogeneity while allowing its effect on earnings to be moderated by the firm
class, capturing potential complementarities.

The BLM framework overcomes two key limitations of AKM: it relaxes the additivity
assumption to allow for unrestricted interactions and, by grouping firms, it increases
the density of the mobility network, which helps address the “limited mobility bias”
documented by Andrews et al. (2008) and Bonhomme et al. (2023).

A.3. Limitations andmotivation for TWICE

The AKM and BLM frameworks have established foundational insights into wage disper-
sion. AKM identified firm heterogeneity as a first-order component, while BLM refined
this by showing that sorting is paramount and that pure firm effects, net of workforce
composition, are modest. Both show that parsimonious representations are crucial when
mobility is sparse.

For our goals, three limitations remain. First, both frameworks treat themain objects as
latent and typically relegate observables to residual controls: they are not designed to map
balance-sheet and workforce characteristics directly into wage premia or to generalize
those premia to new firms and workers. Second, forming firm classes from earnings dis-
tributions can blur wage-setting policies with workforce composition, making it harder to
separate the two. Third, portability outside the connected set (AKM) or beyond the training
firms (BLM classes) is limited. These considerationsmotivate a complementary, observable-
anchored approach that retains the two-way structure and sorting/decomposition logic
while emphasizing prediction, interpretability, and out-of-sample use.

Appendix B. Theoretical framework and identification

This appendix provides the formal statistical foundation for TWICE. It makes explicit
the data generating process, states the assumptions on observables and on the learner,
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and links the variance decomposition to the conditional expectation function (CEF)m0
introduced in Section 2.2.

B.1. Data generating process

Let Yit denote the logwage ofworker i at time t, employed at firm j = J(i, t). LetX j ∈ X ⊆ Rdx
and Zit ∈ Z ⊆ Rdz denote firm and worker observables, respectively (X and Y denote the
support of either). We assume

Yit = m0(X j,Zit) + uit,

wherem0 : X × Z→ R is a structural wage function and uit is an idiosyncratic error.
Identification ofm0 relies on the following:

ASSUMPTION B1 (Sufficiency of observables). The observables (X j,Zit) contain all systemati-
cally wage–relevant information, in the sense that

E[uit ∣ X j,Zit] = 0.

Let PX,Z denote the joint distribution of (X j,Zit).

PROPOSITION B1 (CEF representation). Under the data generating process above and Assump-
tion B1,

E[Yit ∣ X j = x,Zit = z] = m0(x, z)

for PX,Z–almost every (x, z).

PROOF. By the law of iterated expectations,

E[Yit ∣ X j,Zit] = E[m0(X j,Zit) + uit ∣ X j,Zit] = m0(X j,Zit) + E[uit ∣ X j,Zit]

Assumption B1 implies Euit ∣X j,Zit = 0, hence E[Yit ∣ X j,Zit] =m0(X j,Zit) which yields the
stated equality for PX,Z–almost every (x, z).

B.2. Population partitions and approximation

Section 2.2 defined the worker and firm partition functions g : Z→ {1, . . . ,L} and h : X→
{1, . . . ,K}, the L2–optimal population partitions (g∗,h∗), and the associated cell means

µℓk ≡ E[Yit ∣ g∗(Zit) = ℓ, h∗(X j) = k], µ ≡ E[Yit]

For notational convenience, write cit ≡ µg∗(Zit),h∗(X j) for the cell mean associated with
observation (i, t). The residual in the decomposition is ξit ≡ Yit − cit.
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Substituting Yit = m0(X j,Zit) + uit yields

ξit = (m0(X j,Zit) − cit)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
approximation error

+ uit
´¸¶

stochastic error

By the definition of µℓk as conditional means,

µℓk = E[Yit ∣ g∗(Zit) = ℓ, h∗(X j) = k] = E[m0(X j,Zit) ∣ g∗(Zit) = ℓ, h∗(X j) = k]

so
E[m0(X j,Zit) − cit ∣ g∗(Zit) = ℓ,h∗(X j) = k] = 0

Hence the approximation error is mean–zero within each cell and can be pooled with
uit in the residual variance component Var(ξit). Intuitively, ξit collects pure noise plus
within–cell heterogeneity that cannot be captured by a finite number of worker and firm
groups.

B.3. Approximation and estimation

In practice, we do not observem0 and cannot directly work with (g∗,h∗). Instead, TWICE
uses a sequence of tree–based predictors to approximatem0 and to construct estimated
partitions. In this section, we formally characterize the properties of this approximation.
For notational simplicity, we drop observation indices and write (X,Y ,Z) for (X j,Yit,Zit).

Let {FN}N≥1 denote a (possibly growing) sequence of function classes from X ×Z to R
induced by the tuning restrictions of the tree–ensemble learner (depth, minimum leaf
size, number of boosting iterations, early stopping, etc.). Let L2(PX,Z) be the (real) Hilbert
space of measurable functions defined on the underlying sample space such that the
squared function is integrable with respect to the measure PX,Z. Define the best-in-class
approximation tom0 as any element

f ∗N ∈ arg minf ∈FN
E[(m0(X,Z) − f (X,Z))2].

We do not require f ∗N = m0. If, as N →∞, the approximation error

inf
f ∈FN

E[(m0(X,Z) − f (X,Z))2]

tends to zero (e.g. if ∪NFN is dense in L2(PX,Z)), then f ∗N approximatesm0 arbitrarily well
in L2(PX,Z). Let f̂ N be the predictor produced by the gradient–boosted tree algorithm on
a sample of size N, with tuning parameters chosen as described in Section 2.3. We posit
the following assumption(s).
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ASSUMPTION B2 (Regularity for tree-based learners). The following conditions hold:
a. The support of (X,Z) is compact and the CEFm0(x, z) is bounded and Lipschitz–continuous.
b. The function class FN consists of additive tree ensembles (finite sums of regression trees),

with depth allowed to grow with N.
c. Define the population and sample mean squared prediction errors

Q( f ) := E[(Y − f (X,Z))2], QN( f ) :=
1
N

N
∑
n=1
(Yn − f (Xn,Zn))2 .

The tuning/estimation procedure returns f̂ N ∈ FN such that: (i) it is

sup
f ∈FN
∣QN( f ) −Q( f )∣

p
Ð→ 0;

(ii) there exists εN ↓ 0 with

QN( f̂ N) ≤ inf
f ∈FN

QN( f ) + εN with probability tending to one.

d. Moments are uniformly bounded: E[Y2] < ∞ and sup f ∈FN E[ f (X,Z)
2] < ∞ for all N.

e. For each N, the set FN is nonempty, closed, and convex in L2(PX,Z), so that the minimum
defining f ∗N is attained and f

∗

N is the L
2(PX,Z)–projection of m0 onto FN .

These are standard regularity conditions ensuring that the problem is well-behaved.
Existing results for tree ensembles imply that, with suitable tuning, the expected mean
squared prediction error of f̂ N can be made arbitrarily close to the best achievable within
FN ; see, for example, Wager and Athey (2018) and Chiang et al. (2022). Proposition B2
restate these results in our setting.

PROPOSITION B2 (Prediction–error consistency). Suppose Assumption B1 holds and Assump-
tion B2 holds for the sequence of classes {FN}. Let f ∗N ∈ argmin f ∈FN E[m0(X,Z) − f (X,Z)2].
Then

E[( f̂ N(X,Z) − f
∗

N(X,Z))
2
] → 0 as N →∞.

If, moreover, inf f ∈FN E[(m0(X,Z) − f (X,Z))2] → 0, then

E[( f̂ N(X,Z) −m0(X,Z))
2
] → 0.

PROOF. Fix N. For any f ∈ FN ,

Q( f̂ N) −Q( f ) = {Q( f̂ N) −QN( f̂ N)} + {QN( f̂ N) −QN( f )} + {QN( f ) −Q( f )}.
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Taking f = f ∗N and using Assumption B2(c)(ii),

Q( f̂ N) −Q( f
∗

N) ≤ {Q( f̂ N) −QN( f̂ N)} + {QN( f
∗

N) −Q( f
∗

N)} + εN .

Hence,
Q( f̂ N) −Q( f

∗

N) ≤ 2 sup
g∈FN

∣QN(g) −Q(g)∣ + εN .

Assumption B2(c)(i) and εN → 0 imply Q( f̂ N) −Q( f
∗

N)
p
Ð→ 0.

Under Assumption B1, Y = m0(X,Z) + u with E[(u ∣ X,Z)] = 0, so for any f ,

Q( f ) = E[(m0(X,Z) − f (X,Z))2] + E[u2],

and therefore

Q( f̂ N) −Q( f
∗

N) = E[(m0(X,Z) − f̂ N(X,Z))
2
] − E[(m0(X,Z) − f ∗N(X,Z))

2].

If FN is closed and convex in L2(PX,Z), then f ∗N is the L2–projection ofm0 onto FN . Hence,
by the properties of projections on Hilbert spaces:

E[(m0 − f̂ N)
2
] ≥ E[(m0 − f ∗N)

2] + E[( f̂ N − f
∗

N)
2
],

so that:
E[( f̂ N − f

∗

N)
2
] ≤ QN( f̂ N) −QN( f

∗

N)
p
Ð→ 0.

Since E[( f̂ N − f
∗

N)2)] ≥ 0, Assumption B2(d) implies that E[( f̂ N − f
∗

N)2)]N is uniformly
integrable; hence E[( f̂ N − f

∗

N)2)] → 0.
Finally, by the triangular inequality:

∥ f̂ N −m0∥L2 ≤ ∥ f̂ N − f
∗

N∥L2 + ∥ f
∗

N −m0∥L2 ,

and if the approximation error ∥ f ∗N −m0∥L2 → 0, then ∥ f̂ N −m0∥L2 → 0.

B.4. Cross–fitting and orthogonality

Variance components in TWICE are computed using predictions fromcross–fitted versions
of f̂ N . Partition worker identifiers into disjoint blocks {Ia}Ba=1 and firm identifiers into
{Jb}Bb=1. For each (a,b), let

Sab = {(i, t) : i ∈ Ia, J(i, t) ∈ Jb}
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be the holdout cell. Define the corresponding training index set

Strab := {(i, t) : i ∉ Ia, J(i, t) ∉ Jb}.

Estimate f̂
(−ab)

on Strab and generate predictions f̂
(−ab)(XJ(i,t),Zit) only for (i, t) ∈ Sab.

We (somewhat informally) assume a standard multiway–clustering structure:

ASSUMPTION B3 (Dependence structure). Errors {uit}may be arbitrarily dependent within
worker clusters and within firm clusters, but are weakly dependent across distinct workers and
distinct firms (so that standard asymptotic results apply).

Cross-fitting ensures that f̂
(−ab)

is trained on a sample that excludes the evaluation
observation (i, t) ∈ Sab, so that the only remaining source of correlation with uit is approx-
imation/estimation error, which vanishes per the following results.

PROPOSITION B3 (Cross–fitted orthogonality). Suppose Assumptions B1, B2, and B3 hold,
and that the prediction–error consistency property in Proposition B2 holds for each fold estimator

f̂
(−ab)

trained on Strab. Then, for each (a,b) and each (i, t) ∈ Sab (with j = J(i, t)),

E[ f̂ (−ab)(X j,Zit)uit] Ð→ 0 as N →∞.

PROOF. Fix (a,b) and an observation (i, t) ∈ Sab with j = J(i, t). Write f
∗

N for the best-in-
class function in Proposition B2, so that f ∗N(X j,Zit) is measurable with respect to (X j,Zit).

Decompose

E[ f̂ (−ab)(X j,Zit)uit] = E[( f̂
(−ab)(X j,Zit) − f

∗

N(X j,Zit))uit] + E[ f
∗

N(X j,Zit)uit].

The second term on the right-hand side equals zero by Assumption B1 since, by the Law
of Iterated Expectations:

E[ f ∗N(X j,Zit)uit] = E[ f
∗

N(X j,Zit)E[uit ∣ X j,Zit]] = 0.

Regarding the first term, the Cauchy–Schwarz inequality gives:

∣E[( f̂ (−ab)(X j,Zit) − f
∗

N(X j,Zit))uit]∣ ≤

≤ (E[( f̂ (−ab)(X j,Zit) − f
∗

N(X j,Zit))
2
])
1/2
⋅ (E[u2it])

1/2
.

By Proposition B2 applied to the fold estimator f̂
(−ab)

and the moment bound in Assump-
tion B2(d), the first factor converges to zero. Because E[u2it] < ∞, the full expression also
converges to zero. This completes the proof.
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B.5. Decomposition and sorting

Given the population partitions (g∗,h∗) and the cell means µℓk, the worker and firm
components are defined via additive projection. Let πℓk denote the population share of
cell (ℓ, k), with marginals πℓ = ∑k πℓk and πk = ∑ℓ πℓk. The projected effects (α∗,ψ∗) solve

min
α,ψ
∑
ℓk
πℓk (µℓk − µ − αℓ −ψk)

2

subject to∑ℓ πℓαℓ = 0 and∑k πkψk = 0. This is a weighted two-way ANOVA decomposition
of the cell means. The first-order conditions yield:

α∗ℓ = ∑
k
(πℓk/πℓ) (µℓk − µ −ψ∗k)

ψ∗k = ∑
ℓ

(πℓk/πk) (µℓk − µ − α∗ℓ )

These form a system that can be solved iteratively or via direct matrix methods.
The key property is that the interaction term κ∗

ℓk = µℓk − µ − α
∗

ℓ −ψ
∗

k satisfies

∑
ℓ,k
πℓkα

∗

ℓ κ
∗

ℓk = 0 ∑
ℓ,k
πℓkψ

∗

kκ
∗

ℓk = 0

Hence Cov(α∗,κ∗) = Cov(ψ∗,κ∗) = 0 at the observation level.
When κℓk = 0 for all (ℓ, k), the systematic component of wages is additive in worker

and firm types; nonzero values of κℓk capture complementarities or mismatch at specific
worker–firm combinations.

Moreover, when cells are balanced (πℓk = πℓπk for all ℓ, k), the projection coincideswith
simple conditional means: α∗ℓ = E[µℓk ∣ ℓ] − µ. Under sorting, where high-type workers
concentrate in high-type firms (πℓk ≠ πℓπk), the projection and conditional means differ.
The projection isolates the “pure” worker effect from the firm types that workers of type ℓ
endogenously match with.

The sorting component in the variance decomposition is

Sorting = 2Cov(αg∗(Z),ψh∗(X)) = 2∑
ℓ,k
πℓkαℓψk

which measures assortative matching on observables: the extent to which high–premium
worker types match with high–premium firm types.
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B.6. Relationship with AKM

The standard AKMmodel specifies

Yit = θi +ΨJ(i,t) + rit

where θi and Ψ j are latent worker and firm effects and rit is an idiosyncratic error. For
comparison with the TWICE decomposition, it is useful to write the latent firm effect as

Ψ j = ψh∗(X j) + ν j

where ψh∗(X j) is the firm component implied by the TWICE partition and ν j is a residual
term combining unobserved firm heterogeneity and estimation noise.

In this representation,ψh∗(X j) can be interpreted as the part of the AKMfirmpremium
that is systematically associated with observable firm characteristics X j, while ν j captures
features of Ψ j that are orthogonal to the TWICE partition (together with sampling noise
in finite samples). In sparse mobility networks, the variance of the sampling noise in
Ψ̂ j is large, implying Var(Ψ̂) > Var(Ψ). TWICE regularizes Ψ j by restricting attention to
the component that is predictable from observables, effectively discarding much of the
sampling noise as well as any unobserved firm heterogeneity that does not load on X j.

This trade–off underlies the interpretation of TWICE firm effects as observable wage
premia and of TWICE sorting as assortative matching on observables, as discussed in
Section 2.5.

Appendix C. Data and sample construction

This appendix provides details on sample selection, variable definitions, and descriptive
statistics.

C.1. Sample selection

Starting from the matched QP-SCIE data for 2012–2019, we apply the following filters:
• Firms: Private sector; at least 5 employees; non-missing EBITDA.
• Workers: Full-time; aged 20-65; tenure ≥ 2 months; positive annual earnings.
• Wages: Log hourly wage, constructed as log(annual earnings/annual hours).
• Connectivity: Restricted to the largest connected set of firms linked by worker mobility,
ensuring comparability with AKM.

Table C3 reports connectivity statistics. The largest connected set retains 99.6% of workers
and 97.6% of firms, reflecting a well-integrated labor market with substantial worker
mobility across employers.
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C.2. Descriptive statistics

This subsection provides descriptive statistics for the matched employer–employee panel
used in the empirical analysis. Unless otherwise noted, all moments are computed on
the estimation sample restricted to the largest connected set of the worker–firmmobility
graph over 2012–2019. Table C1 summarizes annual cross-sections; Table C2 reports the
industry composition in 2019; Table C3 describes mobility and connectivity, which are key
for AKM-style identification. Table C4 and Table C5 document the distributions of firm
size (number of employees observed in the sample), worker age, and firm tenure; hourly
wages are expressed in logs when indicated.

TABLE C1. Panel summary by year

Year # Firms # Workers Avg.
log-wage

Sh.
graduates

Sh.
managers

2012 43,162 349,195 1.97 0.17 0.09
2013 42,054 351,095 1.99 0.18 0.09
2014 43,697 376,585 2.00 0.19 0.09
2015 46,131 406,379 2.00 0.20 0.09
2016 49,171 439,757 2.01 0.20 0.09
2017 52,123 474,678 2.03 0.21 0.09
2018 54,525 496,647 2.06 0.21 0.10
2019 55,330 507,366 2.10 0.22 0.10

Note: Annual cross-sections from the matched employer-employee panel (Quadros de Pessoal), restricted
to the largest connected set. Log-wage is the natural logarithm of hourly wages. Graduates: share with tertiary
education (ISCED 5+). Managers: share in managerial occupations. The steady growth in employment and
graduate share reflects Portugal’s post-crisis recovery and workforce upskilling.

TABLE C2. Industry composition (2019)

Industry # Firms # Workers Avg.
log-wage

Avg.
firm size

Sh.
graduates

Sh.
managers

wholesale, retail, accommodation 20,515 146,900 2.07 7.16 0.22 0.09
manufacturing 12,815 140,433 2.05 10.96 0.17 0.07
construction 7,270 46,913 2.16 6.45 0.14 0.10
services 6,319 94,933 2.12 15.02 0.33 0.16
personal services 3,061 20,991 2.12 6.86 0.41 0.18
logistics 2,562 36,945 2.28 14.42 0.12 0.05
agriculture 1,403 7,331 2.01 5.23 0.15 0.06
PA 724 3,082 2.04 4.26 0.51 0.32
energy 319 6,722 2.22 21.07 0.25 0.18
mining 244 1,953 2.28 8.00 0.11 0.07
finance 98 1,163 2.51 11.87 0.72 0.34

Note: Cross-sectional summary by industry for 2019. Industries ranked by number of workers. Finance
pays the highest wages and employs the largest share of graduates; manufacturing and agriculture pay below
average despite substantial employment shares.
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TABLE C3. Mobility and connectivity

Metric Value

Workers (pre-connectivity) 755,698
Firms (pre-connectivity) 97,981
Workers (connected sample) 751,866
Firms (connected sample) 95,665
Observations (connected sample) 3,401,702
Mean firms per worker 2.170
Mean workers per firm 16.740
Share of workers with >=3 firms 0.214
Worker retention after connectivity filter 0.996

Note: Statistics for the employer-employee mobility graph (2012-2019). Mean firms per worker indicates
averagenumber of distinct employers observed. The largest connected set (LCS) retainsnearly all observations,
indicating a well-connected labor market suitable for AKM estimation.

TABLE C4. Firm size distribution by year

Year Mean size p50 p75 p90 p99

2012 8.09 3.00 6.00 14.00 76.39
2013 8.35 3.00 6.00 14.00 82.00
2014 8.62 3.00 6.00 14.00 87.00
2015 8.81 3.00 6.00 15.00 90.00
2016 8.94 3.00 6.00 15.00 90.00
2017 9.11 3.00 7.00 15.00 94.78
2018 9.11 3.00 7.00 15.00 97.00
2019 9.17 3.00 7.00 15.00 101.00

Note: Distribution of firm size (number of employees) in the estimation sample. The median firm has
3 employees; the 99th percentile reaches 75-100 employees. The right-skewed distribution motivates log-
transformation of size variables in the predictive model.

TABLE C5. Worker age and tenure by year

Year Age p25 Age p50 Age p75 Tenure p25 Tenure p50 Tenure p75

2012 29.0 35.0 43.0 15.0 41.0 95.0
2013 29.0 35.0 43.0 10.0 36.0 88.0
2014 29.0 36.0 43.0 8.0 24.0 78.0
2015 29.0 36.0 44.0 8.0 20.0 65.0
2016 29.0 37.0 44.0 7.0 20.0 46.0
2017 30.0 37.0 45.0 7.0 19.0 42.0
2018 30.0 38.0 46.0 8.0 19.0 41.0
2019 31.0 39.0 47.0 9.0 21.0 44.0

Note: Distribution of worker age (years) and firm tenure (months). Median age rises from 35 to 39 over the
panel, reflecting workforce aging. Median tenure falls sharply from 41 to 21 months between 2012 and 2016,
then stabilizes—consistent with increased labor market flexibility during the recovery period.
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C.3. Covariate definitions

Table C6 reports descriptive statistics for the covariates used in TWICE. Panel A covers
worker-level variables from QP; Panel B covers firm-level variables from SCIE; Panel C
summarizes categorical variables.

C.4. Mobility event study

To assess the exogenous mobility assumption underlying the AKM benchmark, we repli-
cate the event-study design of Card, Heining, and Kline (2013). Firms are classified into
quartiles based on mean coworker wages (excluding the mover). Figure C1 plots wage
trajectories for workers transitioning between the bottom (Q1) and top (Q4) quartiles.

The results display the canonical patterns: wages are flat before the move (no pre-
trends), and gains frommoving up (Q1→Q4) are approximately symmetric to losses from
moving down (Q4→Q1). This symmetry supports the additive separability assumption of
the AKM framework in our sample.

FIGURE C1. Mobility event study
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Note: Event study of log hourly wages around job transitions, following Card, Heining, and Kline (2013).
Firms classified into quartiles by mean coworker wage (excluding the mover). Year 0 is the first year at the
new firm. Flat pre-trends and symmetric wage changes for upward vs. downward moves support exogenous
mobility and additivity.

Appendix D. TWICE estimation details

This appendix documents implementation choices: hyperparameter selection, the two-
way cross-fitting scheme, and interpretability diagnostics.
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TABLE C6. Covariate descriptive statistics

Panel A. Worker covariates
Covariate Mean / SD p25 p50 p75

Age 37.62
(9.92) 30.00 37.00 45.00

Tenure (months) 49.30
(69.34) 8.00 23.00 57.00

Job order (seniority) 1.69
(0.73) 1.00 2.00 2.00

Panel B. Firm covariates
Covariate Mean / SD p25 p50 p75

Firm age 22.85
(61.18) 9.00 18.00 28.00

Log workers 4.76
(2.01) 3.14 4.35 6.01

Log revenue 15.74
(2.21) 14.05 15.61 17.36

Log revenue per worker 10.98
(1.14) 10.222 10.973 11.714

Log revenue /
sales ratio

9.97
(6.99) 0.000 12.487 15.535

Solvency ratio 1.75
(426.78) 0.12 0.35 0.58

Asset ratio 0.02
(0.06) 0.000 0.001 0.005

R&D investment 10185.50
(138362.43) 0.00 0.00 0.00

Patent investment 240232.98
(5684569.98) 0.00 0.00 0.00

Capital per worker (PPE) 33622.63
(161457.57) 1692.66 9451.64 28730.20

Market concentration (%) 0.00
(0.01) 0.019 0.058 0.135

Panel C. Categorical covariates
Covariate Mode (share)

Sector (NACE) wholesale, retail, accommodation (0.29)
Education level at most primary (0.42)
Qualification specialized workers (0.57)
Gender Male (0.61)
Legal form Sociedade por Quotas (0.47)
Region (NUTS2) Area Metropolitana de Lisboa (0.40)

Descriptive statistics for covariates used in TWICE estimation. Panel A (Worker covariates): Age and tenure
are continuous; job order indicates seniority rank within firm. Panel B (Firm covariates): Log revenue per
worker serves as the primary productivity measure. Solvency ratio (equity/debt) exhibits extreme outliers
(SD = 427); we use the raw variable but note that tree-based methods are robust to such skewness. R&D and
patent investment are zero for most firms (median = 0), reflecting that innovation activity is concentrated
among few firms. Market concentration is the firm’s employment share within its industry-region cell; values
appear as 0.00 due to rounding but range from 0.02 to 0.11 at the quartiles. Panel C (Categorical covariates):
Reports modal category and its share. Sector and region are included as categorical predictors; education
and qualification define worker skill groups.
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TABLE D1. Blocked validation loss by grid of worker/firm cell counts

Firm classes K Worker classes L
64 128 256 512

64 0.11987 0.11269 0.10875 0.11297
128 0.11713 0.11049 0.11043 0.10982
256 0.12191 0.11167 0.11116 0.11046
512 0.12173 0.11016 0.11015 0.10859 *

Note: Mean squared error from two-way ID-blocked cross-validation across different numbers of firm
classes (K, rows) and worker classes (L, columns). Asterisk marks the minimum. The optimal configuration
is K = 512, L = 512.

D.1. Hyperparameters andmodel selection

We select LightGBM hyperparameters, including tree depth and the number of worker-
and firm-leaves (which define the cell granularity), by minimizing the two-way blocked
predictive risk:

(D1) L = 1
B2

B
∑
a=1

B
∑
b=1

1
∣Sab∣

∑
(i,t)∈Sab

(Yit − f̂
(−ab)(X j(i,t),Zit))

2

This loss averages squared prediction errors over all worker–firm validation blocks and
ensures robustness to the dependence structure. Because each leaf index corresponds
to a worker or firm cell, this tuning step jointly determines model complexity and the
coarseness of the partitions. When the true heterogeneity is close to discrete, the leaves
approximate the underlying classes; when it is smoother, they provide a flexible step-
function approximation.

Specifically, TWICE relies on two key granularity parameters: the number of worker
classes L and firm classes K. We consider a grid {64, 128, 256, 512} for each side and select
the pair (K⋆,L⋆) that minimizes L. Table D1 reports the grid search results; the optimal
configuration is K = 512 firm classes and L = 512 worker classes.

Partitioning and the final predictor use gradient-boosted trees (LightGBM) with stan-
dard regularization: learning rate 0.08, early stopping after 80 rounds without improve-
ment, max depth 15, and minimum leaf size 30. Categorical features are passed natively;
factor levels are aligned between train and test splits. All random draws use fixed seeds
for reproducibility.

D.2. Two-way ID-blocked cross-fitting

We respect the two-sided dependence in matched data by blocking on IDs rather than
on observations. The training sample (restricted to the connected set) is partitioned into
B = 5 disjoint blocks of worker IDs and B = 5 disjoint blocks of firm IDs, inducing B2 = 25
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validation cells {Sab}Ba,b=1. For each (a,b) we train the predictor on the complement of
Sab—i.e., excluding all rows involving any worker in block a or any firm in block b—and we
score only Sab. No worker or firm ever appears in both the training data and the held-out
cell used to score that worker–firm observation. The cross-fitted risk used for model
selection is the average MSE across all cells as per equation (D1).

D.3. External test set

For an untouched benchmark, we draw a firm-level holdout from the connected set and
sample workers within those firms. All rows linked to held-out firms are excluded from
model fitting and tuning (including cross-fitting folds). We report MSE and R2 on both
train and test; R2 is the squared correlation between Y and Ŷ .

D.4. Interpretability diagnostics

TWICE produces three types of model diagnostics: variable importance, partial depen-
dence plots (PDPs), and accumulated local effects (ALEs). These tools summarize which
covariates drive the partitions and how they relate to predicted wages.

Variable importance. Figure D1 reports LightGBM variable-importance measures (“av-
erage gain”) for the three TWICE models. Importance is the total reduction in the loss
function attributed to splits on each feature, normalized to sum to one.

Panel A (firms) shows that log revenue is the most important predictor, followed by
sector, number of workers, region, capital per worker, and financial ratios (revenue/sales,
solvency). These variables account for most splits used to classify firms into wage-relevant
groups.

Panel B (workers) indicates that qualification, tenure, and education are the main
predictors of worker classification. Sector, region, legal form, and job seniority contribute
additional separation.

Panel C (conditional wage model) shows that qualification and education remain
important, but log revenue and age enter prominently once firm characteristics are
included. Gender, tenure, and capital per worker play smaller roles.

PDP implementation. For a focal feature vS, we evaluate a 40-point quantile grid (trimmed
to the 10th–90th percentiles). For each grid value s, we construct a modified dataset by
replacing the focal coordinate VS by s for every observation, compute predictions, and
average across observations. Predictions are then averaged across the 25 cross-fitted
models.
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FIGURE D1. Variable importance
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B. Worker partition

Qualification

Tenure (months)

Education level

Sector (NACE)

Region (NUTS2)

Legal form

Job order (seniority)

0.0 0.2 0.4
Average gain

C. Conditional wage model
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Relative variable importance for TWICE classification trees. Panel A: features used to partition firms into
classes h( j). Panel B: features used to partition workers into classes g(i). Panel C: features used in the final
conditional wage predictor.

For the firm-size curve, we report a conditional PDP: in addition to setting firm size to
s, we fix log revenue per worker at its sample median for every observation, while leaving
all remaining covariates at their observed values.

ALE implementation. ALEs complement PDPs when predictors are correlated. For a
continuous feature x, we partition its support into 40 grid points, compute average finite
differences within each bin conditional on observed X−x, and accumulate across bins; the
curve is mean-centered by construction. Display is restricted to the 10th–90th percentile
range of each feature to avoid extrapolation. For tenure, which has a highly right-skewed
distribution, we display the x-axis on a log scale.

D.5. Summary of the estimation procedure

The estimation routine is summarized in Algorithm 1.
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Algorithm 1 TWICE Estimation Procedure
Require: Matched worker–firm data {Yit,X j,Zit} restricted to the largest connected set;

candidate gridsK and L for the numbers of firm and worker classes
1: for each (K,L) ∈ K ×L do
2: Firm partition: estimate a supervised tree-based regression of Y j on X j with at most
K leaves; let κK( j) ∈ {1, . . . ,K} be the induced firm classes

3: Worker partition: estimate a supervised tree-based regression of Yit on Zit with at
most L leaves; let λL(i) ∈ {1, . . . ,L} be the induced worker classes

4: Wage prediction: estimate the conditional wage function using two-way cross-fitting
on worker and firm IDs, with regressors (X j,Zit,κK( j),λL(i))

5: Model selection: compute the blocked out-of-sample loss L(K,L) as in (D1)
6: end for
7: Select (K∗,L∗) = argminK,LL(K,L)
8: Re-estimate the finalmodel on the training portion of the connected set using (K∗,L∗)
and evaluate on a separate firm-level holdout sample

Appendix E. Robustness of the firm partition

This appendix assesses whether the TWICE variance decomposition is sensitive to how
the firm partition is constructed in the first-stage supervised learning step. In the baseline
approach, firm-year types are obtained by training a LightGBM model that predicts a
firm-year wage target using observable firm characteristics, and defining firm classes by
the model’s leaf assignments (holding the tuned leaf-count fixed). Since firm-year average
wages may reflect both firm pay policies and the composition of workers employed at the
firm, we consider alternative targets designed to reduce the role of workforce composition.

E.1. Alternative targets

LetWit denote the hourlywagemeasure used in the first-stage firmmodel, and let j = J(i, t)
index the firm employing worker i in year t. We consider three firm-year targets:

(i) Baseline (mean target). The firm tree is trained using the firm’s average log wage,

W̄mean
jt = 1

n jt
∑

i,t:J(i,t)= j
Wit

(ii) Median target.
W̄med
jt =median{Wit : J(i, t) = j}

This reduces sensitivity to outliers and extreme observations while still using a firm-year
wage summary.
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TABLE E1. Robustness

Specification Worker Firm Sorting Interaction Residual

Baseline (mean) 0.276 0.087 0.116 0.073 0.448
Median target 0.275 0.091 0.117 0.075 0.443
Residual target 0.317 0.086 0.085 0.079 0.433

Note: Each entry reports the share of total variance of log wages attributed to the TWICEworker component,
firm component, sorting term, interaction term, and the within-cell residual. Across specifications we keep
the worker partition fixed and retrain the firm partition using alternative first-stage targets (mean, median,
or worker-residual firm-year aggregates), then recompute the TWICE decomposition under the resulting firm
classes.

(iii) Residual target (worker-only residual aggregation). We first estimate a worker-only
wage predictor m̂(Xit) using a cross-fitted LightGBMmodel based on worker characteris-
tics only (in the current implementation: year, tenure, age, sex, education, qualification,
sector, and region). Using cross-fitting by worker groups, we compute residuals

ε̂it =Wit − m̂−k(i)(Xit),

where m̂
−k(i) is trained excluding the fold containingworker i.We then aggregate residuals

to the firm-year level:
W̄ res
jt

1
n jt

∑
i:J(i,t)= j

ε̂it

The firm model is then trained to predictW res
jt using the same firm covariates and the

same tuned leaf count as in the baseline.
Across all three specifications, we hold the worker partition fixed and only retrain

the firm partition under the alternative firm-year targets, then recompute the TWICE
decomposition.

Results. Table E1 reports the TWICE variance-share decomposition under the three
firm targets. The baseline and median targets deliver nearly identical decompositions.
The residual-target specification mechanically shifts variance away from the firm and
sorting components and toward the worker component, consistent with the fact that the
residual target is constructed to remove worker-composition-driven variation from the
firm-year target used to define firm classes. Importantly, the qualitative structure of the
decomposition remains: there is still a meaningful firm component, a sorting term, and a
non-trivial interaction component.

Table E2 reports the Spearman correlation between the firm-year firm component ψ
implied by the baseline partition and by the residual-target partition. The correlation is
sizeable, indicating that—even when the firm partition is trained on a worker-residual
target—the resulting firm pay component remains broadly aligned with the baseline
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TABLE E2. Correlation

Metric Value

Spearman corr. (firm component psi) 0.752

Note: Spearman correlation comparing the baseline (mean-target) and residual-target specifications. The
metric is computed on the firm-year firm componentψ implied by the TWICE additive projection under each
partition.

ranking of firm heterogeneity captured by TWICE.
Overall, these results show that the firm partition—and the resulting variance decom-

position—is not driven by the specific choice of firm-level target, and the main empirical
conclusions of the paper are robust to alternative constructions of firm types.
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