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We study staged entry with costly gatekeeping in a differentiated-products economy:
entrepreneurs observe noisy signals before paying a resource-intensive activation cost.
Precision improves selection but requires more resources, reducing entry and variety:
welfare need not rise with precision. Under CES preferences, the activation cutoff is effi-
cient as profit displacement offsets the consumer-surplus gain from variety. Welfare losses
arise from verification costs shrinking the feasible set of varieties, not from misaligned
incentives. Because the market responds efficiently to any given regime, these losses
cannot be corrected via Pigouvian taxes.
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1. Introduction

Firm entry often proceeds in stages. Regulators license firms before market access, banks
must satisfy supervisory stress tests before expanding balance sheets, and drug developers
must pass increasingly demanding trials before commercialization. At each gate, decision-
makers act on imperfect information: they observe noisy indicators of future performance,
while true productivity is revealed only after resources are committed (Jovanovic 1982).

This paper studies how such staged, signal-based entry reshapes selection and welfare
in a standard differentiated-products environment. We embed staged entry with imperfect,
signal-based gatekeeping into the closed-economy framework of Melitz (2003). Potential
entrants first incur an experimentation cost to learn a noisy signal, then decide whether
to activate and pay an activation cost, after which productivity is revealed and production
occurs only if profitable.

To keep language compact, we use gatekeeping as shorthand for pre-activation screen-
ing that is both informative and costly. We refer to a gatekeeping regime as an information
structure (signal precision) together with the associated per-activation resource require-
ment. We distinguish between raising standards (a higher cutoff) and improving precision
(a better signal). While raising a standard implies a costless policy choice, improving
precision absorbs real resources in verification and compliance. Consequently, tightening
the regime does not mechanically raise the cutoff; instead, it alters equilibrium selection
by changing the information structure and the cost of activation. This reshapes both the
quality (selection) and quantity (variety) of firms, which jointly determine welfare.

Results. A natural presumption is that more informative screening should improve wel-
fare by improving selection. We show this need not hold once we account for the resource
cost of precision.

Comparing across regimes, higher verification precision improves average productiv-
ity through improved selection, but the anticipated cost of verification lowers the expected
value of entry. This creates a chilling effect on experimentation: fewer entrepreneurs
bother to pay the initial fixed cost to learn their signal. We derive a welfare decomposi-
tion showing that welfare is determined by the trade-off between average productivity
(selection) and the mass of surviving varieties. Higher verification precision raises the
former but shrinks the latter. Consequently, welfare is not monotone in precision: a “safer”
market may be poorer because the high compliance burden discourages high-potential
firms from ever emerging.

We distinguish this policy trade-off from the efficiency of the market’s response.
We show that, conditional on any given regime, the decentralized activation cutoff is
constrained-efficient. In the CES benchmark, private entrants perfectly internalize the
social value of activation taking the verification regime as given. Thus, welfare losses



from strict verification regimes arise not from a private-social wedge along the activation
margin, but from the choice of the regime itself: a more resource-intensive verification
technology shrinks the feasible set of varieties even when market participants behave
optimally.

Contributions. We make three main contributions.

First, we introduce a tractable model of staged entry where entrepreneurs learn im-
perfect information before paying a resource cost, and we provide a competitive interme-
diation microfoundation for this structure.

Second, in our maintained CES environment the activation margin is efficient: with
constant markups, the consumer-surplus gain from an additional variety is offset by
business stealing. As a result, conditional on any given regime the decentralized activa-
tion cutoff is constrained-efficient, which isolates the welfare consequences of changing
verification regimes from the familiar entry wedge.

Third, we provide a sufficient condition for welfare to decline at high precision. We
clarify when the selection gains from tighter screening are dominated by the contraction
in variety, offering a check against the view that better information is always desirable.

Policy implications. More precise (and resource-intensive) gatekeeping does not guaran-
tee welfare gains. Policies that tighten verification requirements have first-order welfare
consequences for the unseen extensive margin—the firms that never apply. Because the
market cutoff is efficient, the welfare loss is not a market failure to be corrected by taxes
or subsidies, but a structural cost of the regulatory design itself.

Literature. Ourbenchmarkis Dhingra and Morrow (2019), who establish Pareto-optimality
of the closed Melitz economy. We show that adding staged entry preserves constrained
efficiency along the activation cutoff, yet allows verification precision to depress welfare
through the resource-variety channel. We study information and real resource costs of
gatekeeping, abstracting from the borrowing constraints and heterogeneous markups
emphasized in work on collateral-based misallocation (Midrigan and Xu 2014) and markup-
driven reallocation (Bagaee and Farhi 2020).

Outline. The remainder of this paper is organized as follows. Section 2 presents the
model and characterizes equilibrium. Section 3 analyzes welfare. Section 4 concludes.
Derivations and proofs are in Appendix A.



2. The model

We extend the closed-economy framework of Melitz (2003) by introducing staged entry with
imperfect, signal-based gatekeeping. Firm entry proceeds in two stages: entrepreneurs first
pay an experimentation cost to learn a noisy signal about their productivity, then decide
whether to incur an activation cost based on the signal. True productivity is revealed only
after activation, at which point firms produce or exit.

2.1. Setup

We study a closed economy with monopolistic competition and CES preferences. The
representative consumer’s utility is US = Jweo q(w)%ldw, where Q represents the
set of varieties available in equilibrium, g(w) is consumption of variety w ¢ Q, and
o > 1is the elasticity of substitution. Firms supply these varieties with heterogeneous
productivities ¢ (w) > 0, which we treat as exogenous. Production requires a single factor
input. It involves a fixed requirement f > 0 (in units of the input) and variable input
usage proportional to output, yielding the total input demand function I(g) = f + g/ fora
firm producing quantity g with productivity ¢. The representative consumer supplies the
input inelastically; we normalize total input to L = 1. The base cost per unit of the input is
normalized to unity.

This economy inherits the standard properties of the monopolistic competition model
by Dixit and Stiglitz (1977) as extended by Melitz (2003). In particular, each firm’s opti-
mal quantity scales with ¢, while revenues and profits scale with ¢°~1. Hence, for any
two firms with productivity ¢; and ¢», the ratio of their equilibrium revenues r (@) is
r(o1)/r(e2) = (91/ (pz)c_l. The productivity distribution is endogenously determined
through competitive selection, but unlike in Melitz (2003), entry proceeds in two stages: en-
trepreneurs first pay an experimentation cost, then decide whether to incur an activation
cost conditional on a noisy signal.

An entrepreneur is characterized by a pair (¢, 0), where ¢ > 0 is true productivity and
0 > 0 is a noisy signal about ¢. Both are drawn from a joint distribution G (¢, 0) but are
initially unobserved. Firm creation proceeds as follows. Entrepreneurs decide whether
to attempt setting up a firm; doing so requires paying a one-time experimentation cost
fr > 0tolearn the signal 8. Conditional on 6, entrepreneurs decide whether to activate by
paying the activation cost f}(p), where p indexes screening precision, after which true
productivity ¢ is revealed. Activated firms then set prices and quantities and produce
if profitable; operating firms remain in the market until forced to exit by an exogenous
shock occurring with probability 6.

This staged entry structure features imperfect, signal-based gatekeeping: the activation

decision is based on the noisy signal 8, with true productivity ¢ revealed only afterward.



Unlike extensions of Melitz that incorporate liquidity constraints for export market entry
(Manova 2013; Chaney 2016), our structure affects the domestic entry margin through
imperfect information rather than borrowing constraints.! This shapes firm selection in
the left tail of the productivity distribution.

We conduct our analysis under three key assumptions.

ASSUMPTION 1 (Signal informativeness). If 0; > 09, then the conditional distribution of
productivity given the signal is shifted to the right: G( @|01) < G( @|02) for all ¢ > 0, with strict
inequality for some .

Assumption 1 ensures that higher signals predict higher productivity in the sense of
first-order stochastic dominance, which implies that expected profits are increasing in 6
and delivers cutoff behavior at the activation stage.

We index the screening precision of the signal by a scalar p € (0,1): higher p corre-
sponds to a more informative verification technology. We refer to a gatekeeping regime as
the pair (p, f b(p)). To capture that higher verification precision requires real resources
(verification, documentation, data collection), we assume:

ASSUMPTION 2 (Costly gatekeeping). The activation cost depends on screening precision and
is given by f, (p), where f},: (0,1) — R, is continuous and weakly increasing.

Assumption 2 allows for general (possibly bounded) verification cost schedules. When
it is useful to derive sharp statements about the high-precision limit, we impose additional
structure on f;(p), including specifications in which costs become arbitrarily large as
p 11 (see Remark1).

ASSUMPTION 3 (Log-normality). For tractability, the joint distribution G (¢, 0) is bivariate
log-normal with standard log-normal marginals. In this benchmark, screening precision is
implemented as p = Corr (log0,log ¢) € (0,1).

Assumption 3 is a parametric benchmark used for closed-form expressions and for the
quantitative exercises; the qualitative logic of staged entry and cutoff behavior relies pri-
marily on Assumptions 1 and 2. In the log-normal benchmark, Assumption 1 corresponds

to p > 0, and we focus on the interior case p € (0,1).

2.2. Analysis

Once the set of firms that have paid both entry costs (f,, and f,(p)) is determined, firm

behavior proceeds as in the Melitz model. Operating firms face CES demand and produce

IThe distinction between f » and f;(p) can be interpreted as a staged cost structure: of the full Melitz
entry cost f,, entrepreneurs pay f, upfront to learn their signal, then pay f;,(p) conditional on passing the
activation threshold.



under monopolistic competition; a firm with productivity ¢ earns per-period revenue
(@) = of (¢/@*)° ! and profit n(@) = r(¢)/o - f = f[(¢/@*)° - 1], where ¢* is
the zero-profit cutoff satisfying t(¢*) = 0. Let 6 € (0,1) denote the effective discount
rate, incorporating both the exogenous probability of firm exit and the consumer’s time
preference.? The equilibrium is characterized by two conditions governing the activation
and experimentation decisions.

Let 7t(0) denote the expected per-period profit from activating an entrepreneur with
signal 0, incorporating the probability of exit after true productivity ¢ is revealed. 3 By
Assumption 1, 7t(0) is increasing in 0: higher signals predict higher expected profits. The
equilibrium features an activation cutoff 0*: entrepreneurs activate if and only if 6 > 0*.
This cutoff is pinned down by the Activation Condition (AC):

7(0%)

1) 5 = fu(p)-

The left-hand side is the expected lifetime value of profits from activating a marginal
entrepreneur (with & converting per-period profits to present value under exogenous exit);
the right-hand side is the activation cost. A suitable interior 0 exists and is unique under
our assumptions.

The entrepreneurs’ initial experimentation decision is governed by free entry. Let
C (0) denote the marginal cumulative distribution of the signal. Entrepreneurs enter
experimentation until the expected payoff equals the experimentation cost f,. Since
activation occurs only for 6 > 0%, and the activation cost f}(p) is incurred with probability
1-C(07), the Free Entry (FE) condition is:

> 7(0) .
(2) [ Edc @) - [1-c(0")] £y (p) - £ 0.
The first term is expected lifetime profits conditional on activation; the second is the
expected activation cost; the third is the experimentation cost. Together, the AC (1) and
FE (2) conditions fully characterize equilibrium.

Our baseline formulation is reduced-form: entrepreneurs pay the activation cost as
a real resource outlay when they choose to activate. In this setting, the same allocation
can also be supported by equivalent microfoundations (e.g., competitive intermediaries
who finance activation or perform verification in exchange for an actuarially fair claim
contingent on 0). Because these microfoundations do not change the information structure
or feasibility of activation, they redistribute surplus but do not affect the equilibrium
cutoffs or aggregates, so we do not pursue them further. This is shown in Appendix A.2.

Formally, in continuous time with flow discount rate r and Poisson exit rate A, the effective discount rate
isd=r+A.

3Formally, 75(0) accounts for endogenous survival through the operating cutoff ¢*; dividing by & converts
per-period profits into expected lifetime value under exogenous death.



When competitive intermediaries provide f;(p) in exchange for profit shares, zero-
profit competition pins down the activation cutoff at exactly the same 6* as in (1). Contract
terms redistribute surplus but do not affect selection. We present staged entry as the
baseline; Appendix A.2 provides the formal proof of allocation equivalence under finance.

To complete the analysis, we must characterize the function 77(0). Adapting the post-
entry analysis from the Melitz model, for a given signal value 6, we have:

0 o-1
©  wO- BN -£{ [T (L) aselo)--c(olo)l),

where @* represents the productivity threshold below which firms find production unprof-
itable and exit in equilibrium. Equation (3) incorporates endogenous survival through the
common cutoff ¢*, which induces a signal-dependent survival probability. Importantly,
both the AC (1) and FE (2) conditions are implicitly functions of ¢* through equation (3).
The equilibrium is fully determined by the threshold pair (6%, ¢*). The equilibrium geom-
etry we use throughout is a feature of the log-normal benchmark: log-normality delivers
a power-form AC locus and a single-peaked FE locus in the (87, ¢*) plane (Appendix A.1).
Assumption 1 ensures expected profits are increasing in 0 (so the FE slope switches sign
once), while Assumption 2 enters here only through the level of the activation cost f}(p)
(its monotonicity in p matters for the comparative statics and welfare analysis below).

PROPOSITION 1. Maintain Assumptions 1-3. Then an equilibrium pair (0%, ¢*) exists and is
unique. In the log-normal benchmark, the equilibrium is characterized by the intersection of the
AC curve, @* = A (0*)° for some constant A > 0, and the FE locus, which is single-peaked in 0*
(equivalently, it has a unique maximizer and at most one stationary point). The intersection
occurs precisely at this unique maximizer of the implicit function relating ¢* to 0" traced out
by the FE locus.

The proof is in Appendix A.1.

Figure 1 illustrates the equilibrium as the intersection between the two solid curves
representing the AC and FE conditions. The AC curve exhibits a monotonically increasing
relationship because higher signal thresholds lead to higher productivity thresholds
through improved firm selection.

The FE locus is single-peaked because raising the signal cutoff 6* has two opposing
effects in (2): it (i) excludes marginal activated types (lowering expected profits) and (ii)
reduces the probability of paying the activation cost f;(p). When 0" is low, the cost-
saving effect dominates and the FE locus slopes upward; when 0* is high, the foregone-
profit effect dominates and the FE locus slopes downward. The peak occurs where these
effects offset, equivalently where 71(0*) /5 = f},(p), so in equilibrium the AC and FE curves
intersect at the FE maximum.



FIGURE 1. Equilibrium of the model and comparative statics
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Note:  Solid lines: the equilibrium pair (6*, ¢*) solves AC (1) and FE (2). The AC locus slopes upward; the FE
locus is single-peaked (upward sloping for 0 < 0 and downward sloping for 6 > 0). Dashed lines: a higher
operating fixed cost (f’ > f) shifts FE up and rotates AC left, raising both cutoffs.

Operating fixed-cost shocks. As a simple comparative statics exercise, increase the per-
period operating fixed requirement from f to f' > f, holding (f,,, f»(p), p) fixed. This
shifts the FE locus up and rotates the AC locus left, so the equilibrium features higher
cutoffs 0" and ¢* (dashed curves in Figure 1). Intuitively, a higher operating fixed re-
quirement reduces profits at any given productivity, so sustaining entry requires stricter
selection: a higher productivity cutoff, and (because signals predict productivity) a higher
activation cutoff.

Limit cases. To clarify how staged entry nests the standard Melitz framework, Figure 2
(Panel A) summarizes two limit cases. Both are outside the maintained domain p € (0, 1),
but they are useful for intuition.

Uninformative signals (p — 0). Signals contain no information, so 6* — 0 and all experi-
menters activate. The total entry cost is paid by every entrant; in the p — 0 limit this cost
converges to fog = f, + f,, where f, =limgo f3(p). The FE condition reduces to:

(1-6(%5))

5 70~ feo =0,

where 7 is expected profit conditional on survival and the ZPC is g = f k(¢ ), with
k(o*) = [3(9*)/@*]° ! - 1as in Melitz (2003).
Perfect-information thought experiment (p — 1 holding f, fixed). Suppose instead that signals



FIGURE 2. Limit cases and fixed-cost intuition

A. Uninformative vs. perfect information B. Increasing the operating fixed cost
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Note: Panel A contrasts p — 0 (solid) with a perfect-information thought experiment p — 1 holding f, fixed
(dashed). Panel B shows the Melitz operating-fixed-cost shift: raising f to f’ shifts the ZPC curve.

become perfectly informative while the activation cost is held fixed at some finite level f7.
Then activation implements perfect selection, and the activation cost is equivalent to a
higher effective operating fixed requirement f + & f}, in present-value terms. Free entry
becomes:

with the ZPC given by 71y = ( f+ éfb) k ((pf ) In this thought experiment, better information
strengthens selection holding costs fixed, so @] > @;.

Panel B of Figure 2 gives the standard Melitz comparative statics: raising the operating
fixed cost shifts the ZPC outward and increases the productivity cutoff. This corresponds
to tighter selection in our two-stage model (higher ¢* and, by informativeness, higher 6*),
consistent with the joint-cutoff movement in Figure 1. Unlike the full gatekeeping exercise,
however, Figure 2 is meant to isolate the selection channel; the welfare analysis below
additionally incorporates the feasibility channel operating through the regime-dependent
activation cost f;(p).

3. Welfare

This section analyzes how gatekeeping affects social welfare. We extend the standard
Melitz welfare accounting to incorporate experimentation and activation costs, then



proceed in two steps:

a. Across-regime comparison: We ask which gatekeeping regime (p, f1,(p)) maximizes
welfare. This compares equilibria with different information structures and resource
costs.

b. Within-regime efficiency: We ask whether, holding the regime fixed, the decentralized
activation cutoff is efficient. This compares the market allocation to a constrained
planner’s solution.

As illustrated in Section 2 (Figure 2), changing the regime creates opposing forces.

Higher verification precision improves selection (Panel A) but acts like a higher fixed cost

that depresses variety (Panel B). The net welfare effect depends on which force dominates.

3.1. Welfare building blocks

Following Melitz (2003), social welfare is:*

@) w= 2" ueg,
o

where M represents the mass of operating firms in equilibrium and @ denotes their
“aggregate” productivity calculated as a generalized average of order o — 1. The relative
contributions of these two components depend on verification precision, indexed by p.

To evaluate equation (4) in steady state with staged entry, define the probabilities of
passing the signal and productivity thresholds as Py = Pr(0 > 0*) and Py, = Pr(¢ > ¢*,0 >
0"). In equilibrium, experimentation uses Ly, = M, f, and activation uses Ly, = PgM,f4(p),
where M, is the mass of entering firms. Rewriting welfare in terms of the experimentation
margin M, clarifies how the gatekeeping regime shapes variety: tighter verification can
raise the per-experimenter resource cost and therefore reduce the mass of experiments
that can be sustained in equilibrium. Combining (4) with the definition of @ and the
steady-state flow condition M = P M, yields:

o- 1)‘7_1 M. (p) E

©) (O = s

(@“—11](9 >0%, @> (p*)).

Here, the selection-variety tradeoff is transparent: gatekeeping affects welfare both
through the “quality” of survivors (the selection channel, the expectation term), and
the “quantity” of experiments (the variety channel, M.(p)). Define the unconditional
expected profits at the experimentation stage as 7(p) = [y« 71(6) dC(0). By free entry,
(p) =0 (9’5 fp(p) + fr,)- Let 7 and 7 denote average flow revenue and profit per operating
firm, respectively.

*As in the original monopolistic competition model by Dixit and Stiglitz (1977), social welfare equals the
inverse of the price level.



Finally, the labor market clearing condition implies that resources per operating
variety are given by:
L 7(p)

(6) M:?_ﬁ+ iP?b’

where 7t(p) /Py, is the amortized setup burden—i.e., the setup cost per experimenter scaled
by the probability an experimenter becomes an operating firm. For fixed L, a higher setup
burden reduces the sustainable mass of firms M and therefore reduces product variety.

3.2. Across-regime comparison: the cost of precision

We first examine how welfare varies with the gatekeeping regime indexed by p. Because
equilibrium thresholds vary endogenously with p, the mapping from verification precision
to welfare need not admit a closed-form expression. We therefore establish continuity
and then show that welfare can strictly decline when verification becomes more precise,
even if verification costs remain bounded.

PROPOSITION 2 (Welfare continuity). Maintain Assumptions 1-3. The equilibrium welfare
function W : (0,1) — R, is continuous in verification precision p.

The proof is in Appendix A.3. Continuity ensures that welfare comparisons across regimes
are well-defined and that interior optima, when they exist, can be characterized by stan-
dard methods.

PROPOSITION 3 (Welfare can decline with bounded verification costs). Maintain Assump-
tions 1-3 and assume f,, > 0. Forany 0 < py, < py < 1, there exists a bounded, continuous, weakly
increasing cost schedule f, : (0,1) — R, such that equilibrium welfare satisfies W(pr) < W(pr).

The proof is in Appendix A 4.

Proposition 3 formalizes the selection-variety tradeoff: higher precision improves
selection but increases the resource burden per experiment; when the cost increase
is sufficiently steep, the resulting loss of variety outweighs the productivity gains. The
following corollary makes this tradeoff precise.

COROLLARY 1 (Local welfare condition). Let S(p) = [E(po'—l’ﬂ(ezex-(p))(pzq)*(p)) denote the

selection term and let B(p) = m = fr+P5(0) fo(p)+ pré(_P) (7(p)-7t(p)) denote equilibrium
resources per experimenter. If both are differentiable at p, then

a _ 1 (S(p) B(p)
dp 8V = 5 ( S(0)  Bo) )

Welfare falls locally whenever the resources-per-experimenter elasticity exceeds the selection
elasticity.

10



FIGURE 3. Gatekeeping and welfare.
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Note:  p indexes verification precision: higher p makes signals more informative but requires costlier verifi-
cation. Solid black: welfare W(p); dashed blue: product variety M(p) (mass of operating firms); dotted red:
average productivity $(p). Activation cost: f5,(p) = fo(1+ kp™) (bounded above by f,(1+ «)). Parameters:
0=2, f=015, f, =0.005, f; =3, k =2, « = 8, 5 = 0.1. Each series is normalized by its maximum over the
plotted grid; welfare is maximized at an interior p" ~ 0.89.

The proof is in Appendix A.6.

REMARK 1 (Unbounded cost schedules). If f,(p) - o asp t 1, then W(p) - 0 (Ap-
pendix A.5), guaranteeing an interior optimum. Proposition 3 shows this extreme assumption is
unnecessary: the selection-variety tradeoff operates even under bounded costs.

Figure 3 provides a quantitative illustration of Proposition 3 under a bounded cost
schedule. This analysis distinguishes the choice of regime from the market allocation.
While Dhingra and Morrow (2019) show that the Melitz economy is Pareto-optimal given
fixed primitives, we show that changing the primitives themselves (information and
resource costs) creates a non-monotonic welfare frontier. We plot equilibrium welfare,
product variety (the mass of operating firms), and average productivity as functions of
p over a grid that approaches one. In this calibration, higher screening precision raises
average productivity through better selection but also increases verification costs, which
reduces entry and product variety; the resulting tradeoff generates an interior welfare-
maximizing level of verification precision.

The fact that welfare can decline with more precise (and costlier) verification raises a
natural question: is the laissez-faire economy failing to balance these trade-offs optimally?
To answer this, we now turn to the within-regime analysis, comparing the market allocation
to that of a constrained planner.

11



3.3. Within-regime efficiency: the planner’s problem

We consider a constrained planner who faces the same information and timing as the
decentralized economy. The planner observes the signal 6 before activation, but not true
productivity ¢ and chooses an activation rule m(0) € [0, 1] to maximize welfare, subject to
the resource constraint while taking the experimentation margin as given (equivalently,
as pinned down by free entry for any activation rule).

This is a (constrained) second-best benchmark: the planner controls activation but takes
the experimentation decision (and thus the entry externality) as given.®

The planner’s first-order condition for activation depends on a marginal payoff ker-
nel G(0), derived in Appendix A.7.1. Intuitively, G(6) measures the net social value of
marginally increasing activation at signal 0: it aggregates the welfare consequences for
variety (more operating firms), productivity (the expected quality of entrants conditional
on 0), and resource use (the verification cost incurred). Only the sign of G(8) matters for
cutoff characterization, so we treat the kernel up to a positive multiplicative normalization.

PROPOSITION 4 (Cutoff optimality under single-crossing). Let G(8) denote the constrained
planner’s marginal payoff kernel. Assume (SC): G(0) is weakly increasing in 6. Then there exists
a cutoff 6F such that an optimal activation rule is m(0) = (6 > of )-

The proof is in Appendix A.7.2. Appendix A.7.3 provides primitive sufficient conditions for
(SC) under lognormality.

In general environments, (SC) is a sufficient regularity condition: G(0) aggregates the
welfare consequences of activation for variety, productivity, and resource use, and need
not be monotone in the signal. However, in the CES benchmark we do not need to impose
(SC) separately.

COROLLARY 2 (CES makes single-crossing redundant). Under CES, the planner’s kernel G(8)
can be normalized as 7€(0)/5 — f3(p). Since 7(0) is weakly increasing in © by Assumption 1,
(SC) holds automatically.

The proportionality arises because, under CES, the “appropriability” gain from an addi-
tional variety (consumer surplus that the entrant does not capture) is exactly offset by
the “business stealing” effect (profit displaced from incumbents). As a result, private and
social incentives are aligned on the activation margin, and the planner’s marginal gain
from activation is proportional to the entrant’s private surplus.

This proportionality leads to the central efficiency result of this subsection:

LEMMA 1 (Activation-cutoff efficiency). Under CES, the constrained-efficient activation rule
coincides with the decentralized activation rule (6F = 0*).

>A first-best planner would also choose the experimentation intensity M,. We focus on the constrained
problem to isolate the efficiency of the activation margin.

12



The proof is in Appendix A.7.4.
An immediate policy implication is that no corrective intervention can improve on
the market outcome at the activation margin:

COROLLARY 3 (No Pigouvian correction at the activation margin). Fix a gatekeeping regime
(p, fu(p)). Consider a policy that adds a constant per-activation transfer s and uses an experimentation-
stage transfer to preserve free entry. Then equilibrium welfare is maximized at s = 0.

The proof is in Appendix A.9. In other words, welfare losses from tighter gatekeeping
cannot be undone by Pigouvian intervention at the activation margin.

Lemma 1is crucial for interpreting the welfare results in Section 3.2: if welfare declines
with precision, the cause is not a market failure at the activation margin. Rather, the
decline in welfare at high precision is a structural consequence of the regime choice itself.
The resource intensity of precise gatekeeping shrinks the feasible set of varieties, even
when market participants behave efficiently within each regime. This insight echoes and
extends Dhingra and Morrow (2019), who show that the Melitz economy is Pareto-optimal
given fixed primitives; we show that changing the primitives (verification precision and
its resource cost) creates a non-monotonic welfare frontier even in the absence of any
private-social wedge.

4. Conclusions

This paper studies selection and welfare in a differentiated-products economy with staged
entry: entrepreneurs first experiment to obtain a noisy signal, then decide whether to acti-
vate under costly, signal-based gatekeeping. Tightening the gatekeeping regime improves
selection and raises average productivity, but it also diverts real resources into verification
and reduces the mass of surviving varieties. When the resource burden grows sufficiently
fast with precision, the variety loss dominates the selection gain and welfare falls.

Crucially, this welfare loss is not a market failure. In the CES benchmark, the equi-
librium activation cutoff is constrained-efficient conditional on any regime: private and
social incentives are aligned, and no Pigouvian tax or subsidy at the activation margin
can improve outcomes. The welfare effects of more precise verification arise entirely
from comparing regimes that differ in information and resource intensity, not from a
correctable distortion within any given regime.

This delivers a specific warning for regulation. Policymakers cannot evaluate gatekeep-
ing solely by the performance of survivors. When compliance costs are high, an efficient
market response is to reduce experimentation and variety; a “safer” market may therefore
be a poorer one in welfare terms. Because the market allocation is already efficient at
the activation margin, the appropriate policy response is not corrective taxation but a
reconsideration of the verification regime itself.

13



Future research could extend the framework to open economies, where verification
requirements may act as non-tariff barriers and reshape the selection-variety trade-off
across countries.
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Appendix A. Additional model analysis

A.l. Equilibrium characterization

Maintain Assumption 3. To facilitate our analysis, we establish the auxiliary notation:

t =logo,

p=logo,

h=-logo,

h' =-log@+p(c-1),
- log ¢ — plog6

im

Asterisks denote transformations at threshold values (e.g., t* = log0*). Let

*

* p - pt
27 (t) = .
V1-p?

Additionally, let ¢ (x) be the standard normal PDF and ®(x) its cumulative distribution,
both evaluated at x. We denote by @, (x, y) the cumulative bivariate normal distribution

with standard normal marginals and correlation parameter p, evaluated at (x, y).
Expression (3) can be elaborated as a function of any real t:

#(eh) oo eloD(pp) ( p-opt ) N (p*—pt)
f _/P* V1-p? ¢ \V1-p? A V1-p?
- [ LRy g aa- -0 (2 (0)]
_ (oD (pt=p*)+3(0-1)*(1-p?) [Z:t) ¢ (z-(0-1)V1-p2)dz- @ (-5 (1))
= (oD (pt-p*)+3(0-1)*(1-0%) ((c-1)V1-p2-2"(1)) - @ (-z*(1))
_ (oD (pt-p*)+1(0-1)*(1-0) g ( pt-p”+(o-1)(1- pz)) -0 ( Pt P ) :

V1-p? V1-p?

Therefore, the AC (1) reads:

0,

V1-p2 V1-p2? f

and, for fixed p, it depends on (t*, p*) only through the index x = pt* — p* (with p entering

S(0-D)(ot" -5 )+ Ho-1*(1-0%) (Pt* —p (-1~ 02)) o ( pt* - p* ) _8fu(p) _

as a parameter through the variance term 1 - p?). Hence the AC locus pins down x to a
constant x(p), implying a linear relation p* = pt* —x(p). Let a(p) = —x(p) (equivalently,



A(p) = e4P)), so the AC curve can be written as p* = pt* + a(p). Substituting into the
right-hand side of AC yields a decreasing function of a that crosses zero if 5f,(p)/f >
0. Therefore, a(p) (and hence A(p)) is unique, and it is both decreasing in f}(p) and
increasing in f.

For the FE condition, the expected joint profit 7w = [,:’ 7(0)dC(0) can be expressed as
a function of (t*, p*):

ﬁ(t*,p*):f;ﬁ(ef)qm)dt
- [ e(o_1>(pt—p*)+;(0_1)2(1—&)@(Pt—p* + (f-_:; (1- 92))4,@ dt
pt-p
(s

= fe%(O'—l)z—(o‘—l)p* _t*+p(0—_1) 1) (_ph, B p* + (G_ 1) ) Cb (hl) dhl

o Niers

SN ( auial )cb(h)dh

_p
:f[ez(cl) O DP @, (-p* +o-1,-t* +p(0-1)) - D, (—p*,—t*)],

where the last line follows from the analysis of the standard normal cumulative distribu-
tion’s moments as in Owen (1980). Thus, write the FE condition as follows:

H(p*,t*) = e%(g_l)z_(g_l)p*q)p (-p*+o0-1,-t"+p(0-1))-

* * 6f (p) * 6f
-0y (-5, 1) - Lo () - 2
Differentiating H(p*, t*) with respect to the log-productivity threshold p* (holding

t* and p fixed) and using the standard derivative identities for the bivariate normal CDF
2 *
yields: Let k = 0 — 1 and define A(p™) = o1k ~kP" Write x1=-p*+k,y; = -t* +pk, and

=0.

Xo = _p*) Yo = _t*) SO

* * * 6 p * 6
(1) = AP (o, 1) - Do, ) - T (1) - 2.
Since A'(p*) = -kA(p*) and dx;/dp* = dxog/dp* = -1, we have
0K oD
ap* :_kAq)p(xly.yl)_ (xl;yl) ('xO)yO)

Using —5 90 + (%) = d)(x)q)(jﬁ) note first that y; — px; = (-t* + pk) - p(-p* + k) =
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112
—t* +pp* = ¥y — pxp. Second, since x; = xp + kand A = ek +kxo (because xy = —p*), we

have the exponential-tilting identity A ¢ (x;) = d(xp), so the last two terms cancel exactly.
%p;t) =-(0-1) e%(o_l)z_(c_l)p*d)p (-p*+o-1,-t"+p(c-1)) <0.

The inequality follows because o > 1, the exponential term is positive, and @, (-, -) € (0,1).
Moreover, the derivative with respect to the log-signal threshold t* is shown to be:

OH (p*,t") __ e(cf—l)(pt*—p*)+%(0—l)2(1—p2)(D ( pt* - p*+(0-1) (1 - 92) ) B

ot* V1-p?
_ pt* —P* _ 6fb(p) *
o) ]“’(t )

which is not a monotone function of t*.

LEMMA Al (Single-peakedness). Fix p*. The function t* — H(p*, t*) has exactly one station-
ary point in t*, at which it achieves its global maximum.

PROOF. The expression in brackets in 0J{/dt* equals ﬁ(et* ) f-5f,(p)/f, which is zero
precisely when the AC holds, i.e., at t* = (p* — a(p))/p. Moreover, ﬁ(et*) is weakly in-
creasing in t* (equivalently in 0) by Assumption 1 (and in the log-normal benchmark
this is implied by p > 0). Evaluating the sign of 03(/0t™: for t* < (p* — a(p))/p, we have
ﬁ(et*) < 8f(p), so the bracket is negative and the derivative is positive (since it carries a
leading minus sign and ¢(t*) > 0). Symmetrically, for t* > (p* - a(p))/p, the derivative is
negative. At the boundaries, lim;«_,, o, 0H/9t* = 0 because ¢(t*) — 0. Hence H(p*,t*)
rises to a unique maximum at t* = (p* — a(p))/p and falls thereafter. O

These properties give rise to the pattern depicted in Figure 1. Furthermore, the line
p* = pt* +a(p) can intersect the FE-based implicit function of p* in ¢t* only at its stationary
point, since a(p) is uniquely determined by the AC. A single stationary point guarantees a

unique intersection, and thus a unique equilibrium.

A.2. Microfoundation for staged entry

The equilibrium allocation is fully characterized by the threshold pair (6%, ¢*): all en-
trepreneurs with signals © > 0 are activated, all firms with productivity ¢ > ¢* operate.
The signal cutoff 6 is determined by the AC (1) and FE (2) conditions, which depend
only on expected profits 71(0), cost parameters (f,,, f;(p), d), and the joint distribution of
(6, ).

We assume: (i) financiers observe the signal 0 and can condition contracts on it;
(i) competition is type-by-type (no cross-subsidization across signals); and (iii) contracts
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are feasible in the sense that profit shares b(0) € [0, 1] on the activated set. Feasibility holds
because b(0) = 5f;(p)/7(0) and 7T(0) > T(0*) = 5f,(p) for all 8 > 0 (by Assumption 1),
so b(0) <1.

Under competitive, risk-neutral financiers, the zero-profit condition pins down the
contract schedule: b(0) = 5 (p)/7(0) forall® > 0*. This schedule affects only the division
of surplus between entrepreneurs and financiers—not the cutoff 0, the set of operating
firms, or any aggregate outcome. Any alternative competitive contract form (upfront fees,
actuarially fair loans, equity stakes) that satisfies zero expected profit at each 0 yields the
identical cutoff and allocation.

The key insight is that the equilibrium depends on two primitives: (i) the two-stage
information structure (entrepreneurs observe 0 before activation, ¢ after), and (ii) the
resource costs (f,, f;(p)). This microfoundation provides one interpretation of the acti-
vation stage. Since competitive intermediation is allocation-equivalent to self-funding, the
results hinge on staged entry and gatekeeping rather than on credit-market imperfections.

A.3. Welfare continuity

Proof of Proposition 2. We establish continuity of welfare in p by continuity of (i) the equi-
librium thresholds and (ii) the mapping from thresholds to aggregates.

Thresholds. We exploit the equilibrium geometry from Appendix A.1 to avoid Jacobian
regularity assumptions. Let t*(p) = log0*(p) and p*(p) = log ¢ (p). Under Assumption 3,
the AC depends on (t*, p*, p) only through the difference a = p* — pt*. Letk=oc—-1and
write u = p - pt; then u| t ~ N(0,1 - p?) and, for any pair (¢, p*) with a = p* - pt,

7i(el) _ o0 _
- E((¢M ) -1) 1(u2a)) - /a (kv 1) ¢ () du,
where ¢ Jiso? is the N(0,1 - p?) density. By Leibniz’ rule, the right-hand side is strictly
decreasing in a:

% faoo (ek(u—a) _ 1) q)m(u) du - _k[aooek(u_a)d)m(lL) 1L < 0.

Since f}(p) is continuous and strictly positive, the AC equation ﬁ(et* )/8 = f(p) therefore
pins down a unique a(p) for each p, and a(p) is continuous by continuity and strict
monotonicity in a. Formally, define F(a, p) = 7(e")/(8f) - f3(p)/f using the representation
above; F is continuous in (a, p) and strictly decreasing in a, so for any sequence p, — p
any limit point of a(p,) must solve F(a, p) = 0; uniqueness implies a(p,) - a(p).

Given a(p), consider the FE residual H(p, t; p) from Appendix A.1. Along the AC line
p =pt+a(p), Lemma Al implies that ¢ is the (unique) maximizer of t' = H(p, t'; p) given
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p, hence 0 /dt(pt + a(p), t; p) = 0. Define the one-dimensional function

J(t;p) = H(pt +a(p),t;p).

Along the AC line p = pt + a(p), the AC holds by construction for all ¢; equivalently, the
bracket term in the expression for 0J{ /9t is identically zero, so %if(pt +a(p),t;p) =0 (as
in Lemma Al). Hence the chain rule simplifies to

d K
Ef(t, p)=p @(QH a(p),t;p)-

Because 0JH/dp < 0 everywhere (Appendix A.1), we obtain d%](t; p) <0,s0J(:;p) is strictly
decreasing in t. By Proposition 1, there is a unique t*(p) such that J(t*(p);p) = 0, and
p*(p) =pt*(p)+a(p). Since H is continuous in ( p, t, p) (it is built from normal CDFs/PDFs),
and a(p) is continuous, J is continuous in (¢, p). Continuity and strict monotonicity in
t imply that the unique root t*(p) varies continuously with p (an analogous limit-point
argument applies), and thus so does p*(p).

Aggregates. Given (p*(p),t*(p), p), the equilibrium tail probabilities and truncated mo-
ments under the bivariate normal are continuous in these arguments, so P5(p), P4, (p),
®(p), M(p), and therefore W(p) are continuous on (0, 1). O

A.4. Welfare decline under bounded costs

For the proof it is convenient to write W (p; f;) for equilibrium welfare at precision p when
the activation cost is the constant level f, (holding all other primitives fixed). Proposition 3
then follows by constructing a bounded, monotone schedule that maps py, to a low cost
and py to a high (but finite) cost.

LEMMA A2 (For fixed p, welfare vanishes as f};, - o0). Maintain Assumptions 1-3 and assume
fn > 0. Fixany p € (0,1) and consider equilibria indexed by the activation-cost level f;, > 0
(holding all other primitives fixed). Then lim £,—00 W(p; fp) = 0.

PROOF. Fixp € (0,1) andlet {f} ,}n>1 be any sequence with f} ,, — +o0. Let (67, @7, Me,n)
denote an equilibrium under (p, f3, = f3, ), write t; =log8y, and let Pg | = Pr(6 > 6) =
®(-t;). From the resource constraint (6),

L> Me,fl(fn + :Pé,nfb,n) 2 Me,nfn,

SO Men <L/f, foralln.

Case 1: iP;}n is bounded away from zero along a subsequence. Suppose there exists a sub-

sequence {n;};,; and & > 0 such that Pg = > e for all j. Since f n; — too, we have
> j ,



Pg,n,fb,n; > +o0 and therefore

< L
< fn + ?S,njfb;nj j—oo

Me,n]- 0.

Using (5) and 1(0 > 6, ¢ > ¢;) <1, we obtain

—_ _ —1M) / —_
W(p;fb,n]-)o_ IS(O-Tl)O' %[E((pﬁ l)'

Under Assumption 3, E(¢% 1) = exp(3 (o - 1)?) < o0, so W(p; fb,nj) - 0.

Case 2: Py , - 0 along a subsequence. Otherwise, there exists a subsequence {n;} ., such
that ‘.Pg}n, — 0, hence t;;j — +o00. Under Assumption 3, with (p, t) = (log ¢, log0) jointly
normal and k = 0 - 1, the exponential-tilting identity gives

[E((pkﬂ(e > 6;},)) = [E(ekpﬂ(t > t;j)) = exp(%kz) <D(—(t,’;j - pk)) — 0,

j—oo

because t,jj — +o00. Since {¢@ > cp;;}., 0> 9;;].} c{0> 8;}}}, we have

E(@kﬂ0p2<pa,eze;))5;E(¢kﬂ(eze;)),

and therefore, using (5) with M, ,, ;< L/f,,, we obtain W(p; f b,n]-) - 0.

Conclusion. In either case, every subsequence of {W(p; f} ) }n>1 admits a further subse-
quence converging to 0, hence W(p; f, ,) —~ 0. Since the sequence {f3, ,} was arbitrary,

limg o W(p; f3) = 0. O

Proof of Proposition 3. Fix any 0 < pr, < pg < 1. Choose any finite f, > 0 and let W}, =
W(pr; f) denote equilibrium welfare under the constant-cost regime (pr, f3 = f;). Under
the maintained assumptions (and equilibrium existence for each finite f} > 0), we have
Wr, > 0.

Apply Lemma A2 at p = pg to select a finite f} > f, such that

W(om; fr) <W(er; f¢) = Wr.

Define the bounded, continuous, weakly increasing schedule f; : (0,1) - R, by

fe P <pL,
Fo(0) =4 fo+ (Fp— F) 2
PH —PL

fn P> PH.

pelprL, Pul,
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This schedule is bounded with sup,(g 1) f(p) = f, < o0, continuous, and weakly increas-
ing. Moreover, by construction,

W(pr) =W(erL; fo),  Wlen) =W(pn; f1),

so W(pm) < W(pL). O

A.5. Unbounded cost schedules

Proof of the claims in Remark 1. Let t*(p) = log0*(p) and Py(p) = ®(~t*(p)). From the
resource constraint (6), total labor used for experimentation and activation satisfies

L>Me(p)(fr+Po(0)fp(0)) 2 Me(p) fr

so M¢(p) <L/f, forall p.

Case I: Py (p) is bounded away from zero near p = 1. Suppose liminfyy; P3(p) > 0. Then there
exist ¢ > 0 and pg € (0,1) such that Py(p) > ¢ for all p € (pg,1). Since f},(p) = +oo by
hypothesis, it follows that Py(p) f,(p) — +oo, and therefore

L
+P5(p) f5(p) o 0

Me(p) <
) fu
Using (5) and 1(0 >0*(p), @ > ¢*(p)) < 1, we obtain

W(p) < (5517 M g(po),

Moreover, [E((p"_l) = exp(%(c - 1)2) < oo under Assumption 3, so W(p) > 0asp 1 1.

Case 2: Py(p) —» 0asp 1 1. Otherwise, liminf,; P3(p) = 0. In particular, along any
sequence pp 1 1 for which P5(pn) — 0, we have t*(pp) — +oo. Under Assumption 3, with
(p,t) = (log @, log0) jointly normal and k = o — 1, the exponential-tilting identity implies

E(@*1(0>0%(on))) = E(eP (¢ > ¢°(pn))) = exp(3K%) @(~(t"(pn) - puk)) ——> 0,
because t*(py) - +o0. Since {@ > ¢*(pn),0 >0 (pn)} € {6 > 0" (pn)}, we have
E(*1( 2 0" (pn), 02 0"(0n))) < E(0* (6 2 0% (pn)) ).

With M¢(pn) < L/f,, the same bound in (5) implies W(pp) — 0.
Conclusion. In either case, W(p) - 0asp 1 1.

Finally, if welfare is not maximized at arbitrarily low precision, i.e., there exist 0 < p <
p < Lsuch that W(p) > W(p), then by the limit W(p) — 0 as p 1 1 we can choose p; € (p,1)
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sufficiently close to one that W(p;) < W(p). Continuity of W (Proposition 2) implies that
W attains a maximum on the compact interval [p, p1] c (0, 1), and the maximizer cannot
be at p or at p;; hence there exists at least one maximizer oW e (0,1). O

A.6. Welfare elasticity condition

Start from (5) and define

S(P) = Egpo-11(026(p),p20*(p)) -

Using labor market clearing, total input used equals production input plus experimentation
and activation input:

L=M(p)(7(p) —7(p)) + Me(p) f, + Po (P)Me(p) f()-
Using the steady-state flow condition M (p) = P (p)Me(p), this implies

L= Mo(o) | Fr+ P5(0)f5(0) + “2P) (7(0) ~1(0)) | = Me(p) B(o),

so B(p) = L/M,(p), and hence

Me(p) = %

Substituting into (5) yields

1L (o)

W(p) = () 3 B(o)’

Taking logs and differentiating with respect to p gives Corollary 1.

A.7. Planner analysis and efficiency results

Following Section 3.3, this appendix derives the constrained planner’s marginal payoff
kernel G(0) and proves the efficiency results stated in the main text. The kernel measures
the net social value of activating a marginal firm at signal 0, aggregating effects on variety,
expected productivity, and verification costs. Under CES, single-crossing holds automati-
cally (Corollary 2), and the constrained-efficient cutoff coincides with the decentralized
cutoff (Lemma 1).

Because constant markups align private and social incentives at the activation margin,
we do not need to set up a full constrained optimization problem with Lagrange multipliers.
Instead, we derive the marginal payoff kernel directly via an accounting argument that
exploits CES structure. The section proceeds as follows. First, we give a CES derivation of
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the marginal kernel G(8) that makes the constant-markup cancellation explicit. Second,
we show that single-crossing of G(0) implies cutoff optimality (Proposition 4). Third, we
provide an analytic lemma establishing monotonicity of key conditional objects under
lognormality. Finally, we prove Lemma 1 and Corollary 2.

A.7.1. Kernel derivation

In the CES benchmark, the planner’s marginal value of raising activation at signal 6 can
be expressed directly in terms of private surplus, without tracking how the operating
cutoff ¢ adjusts with the activation rule. The argument is an accounting identity under

constant markups.

o 1
o-1@’
price index. Using P19 = [ p(@(w))}"°dw, we obtain

With CES preferences and optimal prices p(¢@) = welfare equals the inverse

-1_ pl-o _ (0-1\°"1 -1
W =p %= (%) fweﬂ(p(w)0 dw.

Thus, up to the constant (07_1)0_1, welfare depends on the stock of operating firms only
through their total “weight” [ . o(w) ldw.

Now consider a constrained planner who takes the mass of experimenters M, as given
and chooses an activation rule m(0) € [0, 1]. This is a partial-derivative (within-regime)
object: the experimentation margin is determined by free entry given the activation rule,
but the activation cutoff can be assessed conditional on M,. Increasing activation at a
particular signal value 0 by an infinitesimal amount adds an extra flow mass of activated
entrepreneurs proportional to M, dC(0). In steady state, the induced stock effect scales
by expected lifetime 1/6. Conditional on signal 0, only firms with ¢ > ¢* operate, so the
expected contribution to the CES weight per activated entrepreneur is

W(0) = E(cpff—lﬂ(q) > ") ]| e).

Hence the marginal welfare benefit from raising activation at 0 is proportional to ¥(0)/6.
Under CES, revenue and productivity are proportional:

¢ o1 Gf o-1
@) =of (%) = ooere™
Let7(0) = E(r(¢) (¢ > ¢*) | 0). Because the proportionality factor of/(¢*)°! does not
depend on 6, we have 7(0) o« W¥(0), and thus the marginal welfare benefit can equivalently
be written as a positive multiple of 7(0)/5.
Activation itself uses f}(p) units of labor. In addition, when an activated firm draws ¢
and operates, it uses flow labor equal to its fixed plus variable input. Under CES pricing
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with markup u = 5%, variable labor satisfies g(¢@)/¢ = (@) /u = GT‘lr((p). Therefore total
flow labor for an operating firm is

I A= (ORLCRL )

where the last equality uses (@) = r(¢)/o - f. Let 7©(0) = E(t(@) 1(¢@ > ¢*) | 0). Then
the expected present-value production labor induced by an activation at 6 equals (7(0) —
7(6))/s.

Finally, let k > 0 denote the positive conversion factor that puts the marginal welfare
gain and the marginal labor cost on a common scale (equivalently, absorb the constant
CES scaling and the planner’s resource multiplier into k). From the previous steps, the

planner’s marginal net gain from raising activation at signal 0 has the same sign as

7(6) _7(6)-7(6) _

Fo0) = " 5y(0).

b b
Since all suppressed factors in the proportionality are positive, we normalize the marginal
payoff kernel as
~ 7t(0
60)="D_£,(0).

A.7.2. Proof of Proposition 4

Proof of Proposition 4. Let G(0) denote the constrained planner’s marginal payoff kernel
from raising the activation probability at signal 6 (defined up to a positive normalization).
Since M, > 0and dC(0) > 0 for all 6 > 0, the marginal effect of raising m(0) is proportional
to G(0), so its sign is determined by the sign of G(8). Therefore an optimal rule can be
chosen so that m(8) = 1 whenever G(8) > 0 and m(8) = 0 whenever G(8) < 0 (with any
m(0) € [0,1] on {8 : G(8) = 0}). If G(0) is weakly increasing in 8 (the single-crossing
condition), then {6 : G(0) > 0} is an interval of the form [6”, =), hence the optimal
activation rule is a cutoff. O

A.7.3. Supporting results for single-crossing

LEMMA A3 (Monotonicity of building blocks under bivariate normal). Maintain Assump-
tion 3 (lognormal). Fix the cutoffs (t*, p*) and any p € (0,1). Then the following functions
are weakly increasing in 0 (equivalently int = log0): (i) ®(-z*(log0)) = Pr(p > p* | 0);
(i) ¥(0) = E(¢” (¢ 2 *) | 0); (iii) 7(0) = E(7(9) Up > *) | 0).

PROOF. Under Assumption 3, conditional log productivity satisfies p | t ~ N(pt,1- p?).
As t increases, the conditional mean shifts right while the variance is constant, so p | t
increases in the sense of first-order stochastic dominance. Hence, for any weakly increas-



ing function h(-), E(h(p) | t) is weakly increasing in t. The three claims follow by taking
h(p) = W(p2 p*), h(p) = el VP1U(p2 p*), and h(p) = 7(eP) I(p 2 p*), which is weakly
increasing in p because profits 7t( @) are weakly increasing in productivity for ¢ > ¢*. O

A.74. Proofof Lemmal

Proof of Lemma 1. Appendix A.7.1showsthat, under CES, the constrained planner’s marginal
payoff kernel can be normalized as 77(0)/5 — f;,(p). Hence the constrained planner acti-
vates if and only if 77(0) > 6 f,(p), which is exactly the decentralized activation condition
(1). By Assumption 1, 77(0) is weakly increasing in 6, so the constrained-efficient rule is a
cutoff at 8*. Therefore 6 = 8* and W¥ = WP, O

A.7.5. Proof of Corollary 2

Proof of Corollary 2. Appendix A.7.1 shows that, under CES, the planner’s marginal net
gain from activation at signal 0 is proportional to 7(0)/6 — f;,(p). Since 7(0) is weakly
increasing in 6 by Assumption 1, the single-crossing condition holds. O

A.8. Decentralizing cutoff rules

This appendix describes two non-distortionary ways to implement a cutoff activation rule.
In the CES benchmark used in the paper, the constrained-efficient cutoff coincides with
the decentralized cutoff (Lemma 1), so these instruments do not change the allocation;
the constructions are useful for environments in which a cutoff wedge arises.

Fix a cutoff 0F and consider the policy environments described below. For any cutoff
rule m(0) = 1(6 > oP ), the steady-state allocation is pinned down by firms’ operating rule
(¢ > ¢7), the steady-state flow condition M = P M., and the resource constraint (6)
together with the definition of @. The remaining equilibrium object M, is determined by
free entry: entrepreneurs enter experimentation until their expected net payoff equals
f - Thus, to implement the constrained planner allocation associated with cutoff oF, it
suffices to implement the activation set {6 > 6”} and preserve the free-entry condition
under that set.

Regulatory approval rule. Suppose a regulator enforces that activation is permitted if
and only if 8 > 8F. Then the set of activated entrepreneurs is exactly {6 > 67}, so the
induced activation rule coincides with the planner’s rule m(6) = 1(0 > 0F). Given this
activation set, each activated firm observes ¢ and produces if and only if ¢ > ¢*, so
post-activation behavior and selection coincide with the model’s operating stage. Finally,
entrepreneurs’ entry decision is governed by free entry under the same activation rule:

the expected net value of experimentation equals [y,0r (7(6)/8 - f3(p)) dC(8), and in the
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planner allocation this equals f, by the free-entry constraint. Hence, the equilibrium
mass of experimenters under the approval rule coincides with the planner’s M, and the
full constrained-planner allocation is implemented.

Activation transfer and entry fee. Now allow activation decisions to be private but introduce
a constant per-activation transfer s (paid upon activation, possibly negative) and an entry
fee T (paid upon entering experimentation, possibly negative). Given any equilibrium
objects, a type with signal 0 activates if and only if the lifetime value of activation net of
the transfer is non-negative:

(o)

T—fb(p)+520.

Sets = f;(p) —7(0F)/5. Then the activation condition becomes 7(0) > 7(6"), which holds
if and only if 8 > ¥ because 7(0) is weakly increasing in 8 under Assumption 1. Thus the
transfer implements the cutoff rule 6.

Under this cutoff, the expected net value of entering experimentation (before paying

fn) equals
fezep (@ - fo(p) + s) dc(o) - .

Choose T = [y.4r sdC(0). Then the free-entry condition becomes

S (2 - 5u(02) ac(@) - £,

which is exactly the free-entry restriction satisfied by the constrained planner at cutoff 6%.
Therefore the equilibrium mass of experimenters is the same as in the planner allocation,
and so are the induced objects (M, M, ®, ©*).

Budget balance. Total transfers to activated entrepreneurs equal M [y sdC(0), while
total entry fees equal M,t. With T = [y,9r sdC(0) these are equal, so the policy is self-
financed in expectation and requires no net lump-sum taxes.

A9. Pigouvian irrelevance

PROOF. A per-activation transfer s changes the private activation condition to

7i(6)

T—fb(p)+320,

which implements a cutoff rule 6(s) since 7t(0) is increasing in 6. Choose the experimentation-
stage transfer as in Appendix A.8 so that free entry holds under 6(s). By Lemma 1, the
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laissez-faire cutoff 0" is constrained-efficient, so moving the cutoff cannot raise welfare.
Hence welfare is maximized at s = 0, which reproduces 0(s) = 0*. O
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